
The Art of Computational Science

The Kali Code

vol. 8

ACS Data Format:

Self-Describing Data Files

Piet Hut and Jun Makino

September 13, 2007





Contents

Preface 5

0.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 A Hierarchical Data Format 7

1.1 Thinking Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 A Particle Format . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Name Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Compromise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Hierarchical particle structures . . . . . . . . . . . . . . . . . . . 14

1.8 Extended Tag Names . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Particle Output 17

2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A Single Write Method . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Writing to s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Methods f to s and f v to s . . . . . . . . . . . . . . . . . . . . . 21

2.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The File iobody1.rb . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Using the to s Method 27

3.1 xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Nested Output 29

3



4 CONTENTS

4.1 ACS Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Nbody Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Example: Plummer’s Model . . . . . . . . . . . . . . . . . . . . 29

5 Particle Input 31

5.1 How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Passing the Type . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Handling the Header . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Handling Other Lines . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 A Scratch Pad 39

6.1 Extra Information . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Two Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 More Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 A Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Onward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Nested Input 51

7.1 xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Introduction 53

8.1 xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2 xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Literature References 55



Preface

In this volume, Alice and Bob develop a robust and flexible ACS data format,
and implement basic I/O modules, based on that format. The current version
of this volume contains only half of the material that we plan to include here,
in a future release.

[add reference to starlab, for hierarchical particle data structure idea]

0.1 Acknowledgments

Besides thanking our home institutes, the Institute for Advanced Study in
Princeton and the University of Tokyo, we want to convey our special grati-
tude to the Yukawa Institute of Theoretical Physics in Kyoto, where the first
half of this volume was written, during a visit in May 2004, made possible by
the kind invitations to both of us by Professor Masao Ninomiya.

Piet Hut and Jun Makino

Kyoto, July 2004

5



6 CONTENTS



Chapter 1

A Hierarchical Data Format

1.1 Thinking Ahead

Alice: Hi, Bob! How are things?

Bob: Hi, Alice! As far as our project goes, things are fine. As for chores, there
are two referees reports I still haven’t written, an NSF proposal that is due
soon, a committee meeting for which I have to prepare, and so on.

Alice: Business as usual, I take it! I have quite a backlog of things-to-do too.
However, if we would wait for everything to be cleared out of the way, we would
never get around to do some useful work. Shall we just sit down and see how
far we can get, for the rest of the afternoon?

Bob: Yeah, why not. I’m pretty excited by how much we got done so far, and
it is high time we get some form of graphics working, so that we can see what
we’ve been doing so far.

Alice: I agree. But before rushing into that, let us take stock of what we have
done so far. We have written a two-body orbit integrator, which is quite flexible
in the sense that it has a choice of algorithms. On the other hand, the interface
of the program with the user and with external data is quite primitive.

Bob: Well, it’s a toy model, isn’t it, what else do you expect? And why should
that hold us back from visualizing our orbits right away?

Alice: I’m trying to think ahead, to see how our toy model may evolve. Even
though we call our programs toy models, if we are successful in our design, it
is likely that they will be used quite widely, and that they will be modified for
purposes we can’t even think about right now.

Bob: That would be nice, but why should we care about that now?

Alice: If we don’t look ahead, and let things simply evolve, it is quite likely that

7



8 CHAPTER 1. A HIERARCHICAL DATA FORMAT

we will design a better I/O format, before too long. Also, we will probably want
to implement the option to invoke our programs with command line arguments,
rather than always having to change the parameters in the driver file, as we have
done so far. If we change I/O format next month, and command line options
the month after that, then we will wind up with three different versions of each
program, doing more or less the same thing.

This proliferation of versions will be a source of confusion, especially for new
users. What is worse, if we write a graphics interface, we will have to write at
least two parallel versions, one for the original I/O data format, and one for the
later one; and more if we keep changing the data format once more.

Bob: But even if we would try to be a bit more careful now, how can we
guarantee that we won’t change our mind about the data format, say, half a
year from now? It would be very hard to predict what our needs might be by
that time.

Alice: This is indeed a challenge, but I think it is a challenge we can live up to.
If we design our data format with sufficient care and generality and flexibility,
we might be able to absorb even quite unexpected future additions, without
having to change the data framework.

Bob: Are you thinking about a self-describing data format, like the FITS format
that many observers use?

Alice: Indeed, but then more powerful and more flexible. Something like XML
would be a natural choice.

1.2 Tree Structure

Bob: Hmm. The only thing I know about XML is what I have seen in the
VOTable format for the virtual observatory initiative. It seems to be modeled
on the HTML format for web pages.

Alice: I don’t know much about XML either. The basic structure is indeed
list-based, like Lisp, and like HTML. Unlike HTML, XML is more consistent in
always requiring closing brackets of the same type to follow an opening bracket.
From what I have seen of it, the basic idea seems sound and very general. What
worries me a bit is that there are still relatively few tools and applications,
especially in the open source world.

Bob: I must admit, it did strike me as rather wordy, and I’m not sure that we
want to stick to such a precise protocol.

Alice: We could make a compromise, by designing something simpler and more
straightforward, but in such a way that we can translate it easily into XML. We
can then implement both versions for our I/O routines, our own format as well
as an XML format.



1.3. PHYSICAL QUANTITIES 9

Bob: The question is, do we want to have two parallel systems? I guess it
would be okay. There is something to say for having a full XML compatible
version, since XML is likely to remain a generally accepted format for quite a
while to come. And at the same time, I like to have something a bit more user
friendly to work with.

Alice: The only constraint would be to give our own format a lisp-like tree
structure, like XML, by providing opening and closing tags.

Bob: That would make sense. The first thing I would vote for, is to leave out
the full </something> description after a <something> opening, since that is
certainly unnecessarily tedious. And we can always automatically reconstruct
the full ending tags, when we translate into XML.

Alice: I agree. How about having a ”begin something” followed by only an
”end”, and not a full ”end something”?

Bob: I like that, since it fits in nicely with the Ruby syntax. So we just have
to introduce a few special key words, to signal the start of the data for a single
particle, and for a whole N-body system.

Alice: And also for the beginning and end of a file, of our type. We need the
first line of a such a file to be ”begin our-system”. Now how shall we call our
system?

Bob: If we want to be modest, we can call it ”toy-simulations”. Or more
grandiosely, ”toy-computational-science”, if we follow your vision and claim
that we can apply it to any and all form of scientific simulations.

Alice: I know that you are joking, but frankly, I see no reason why our approach
should not be widely applicable to all of astrophysics, or physics, or natural
science for that matter. But to call it a toy may give the wrong emphasis.

Bob: If not a toy, you could call it real science. But the science of computational
science sounds silly. Hey, how about art? The Art of Computational Science.

Alice: I like that! ACS, for short. Okay, the first line for any file in our new
date format will then be begin ACS, and the last line will be end :

begin ACS
. . .

end

1.3 Physical Quantities

Bob: Now how do we specify the connection between hard numbers and the
physical variables that they contain the values of? If we want to be strict, we
could write

begin mass



10 CHAPTER 1. A HIERARCHICAL DATA FORMAT

0.1
end

and similarly

begin position
1.0 0.0 0.5

end

but that seems to be a bit too much of a good thing.

Alice: Yes, it would be better if we could introduce an in-line notation. Even
so, it would be good to keep the form you just wrote down as a legal option
within our system. The in-line notation would then be just syntactic sugar.

Bob: Indeed nicely Ruby-like. What is happening today? We seem to be in
agreement all the time!

Alice: It’s because you agreed so quickly to device a standard format. I ex-
pected that you would put up a fight and resist such extra overhead!

Bob: I would have, a few years ago. But in the mean time, I’ve been bitten
too often by the problems that can happen when you use different file formats
without properly distinguishing them. And the notion of self-describing data
is something I was familiar with through FITS files. So you see, I based my
agreement on real experience, and not on a wish to be theoretically pure in some
way or other.

Alice: Good theoretical ideas arise from the distillation of a large body of
collective experience, so in that sense too, I agree with you. In any case, I’m
sure we’ll develop differences again pretty soon. Moving right along, do you
have a suggestion for an inline notation?

Bob: How about

mass=0.1

Alice: I like the idea of introducing an equal sign, to separate variable and
value, making it look again rather Ruby like. But I don’t like the look of

position=1.0 0.0 0.5

I suggest that we either introduce commas to separate the three numbers on
the right, and allow spaces around the = sign.

Bob: I prefer spaces over commas. Okay, let’s make both legal, what you just
wrote with the equal sign crammed in, as well as

position = 1.0 0.0 0.5



1.4. A PARTICLE FORMAT 11

In other words, an equal sign is the delimiter between variable and value, a
single space is a delimiter between components of a vector, and in addition you
can add as many spaces elsewhere as you like. So the following would be fine
too:

position = 1.0 0.0 0.5

1.4 A Particle Format

Alice: fair enough; let it be so. Now how shall we bundle all these numbers
into one particle?

Bob: We can just call it particle. Here is one particle, all by itself in a file:

begin ACS
begin particle
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
end

Alice: That looks nice. And if we don’t want to use the syntactic sugar, we
can write:

begin ACS
begin particle
begin mass
0.1

end
begin position
1.0 0.0 0.5

end
begin velocity
0.0 1.0 0.0

end
end

end

Bob: Yeah, it is good to keep this as a legal option, but I doubt whether anyone
will ever use that. In fact, once we allow levels of syntactic sugar, how about
introducing an even more compact version:

begin ACS



12 CHAPTER 1. A HIERARCHICAL DATA FORMAT

begin particle
mass = 0.1 ; position = 1.0 0.0 0.5 ; velocity = 0.0 1.0 0.0

end
end

Alice: Good idea! That again conforms with Ruby usage, and it is nice to have
freedom of expression.

1.5 Name Spaces

Bob: If you really want to give me freedom of expression, I have another sug-
gestion. I think that the above version is still a bit verbose. How about using
part instead of particle and pos instead of position. We could even use m
instead of mass, abbreviate things further:

begin ACS
begin part
m = 0.1 ; r = 1.0 0.0 0.5 ; v = 0.0 1.0 0.0

end
end

Alice: nonono, that’s really bad programming. Right now, we know what we
mean, but later on, when we get stellar evolution to mix with stellar dynamics
and who knows what other types of complications, we will soon run out of the
26 letters of the alphabet! I feel strongly that we should keep using full English
words.

Bob: your prediction that we would soon disagree has come true even quicker
than I would have thought! I must say, I really like the compact notation. But
I don’t seem to feel as strongly about it as you do. Oh, well, let’s stick with the
longer descriptions then.

Alice: And come to think of it, ACS is too short a name too. Something like
ArtCompSci or even art-of-computational-science would be much better.

Bob: Now you’re really pushing it! And it is my turn to feel strongly; I like
to be able to talk about what I use, and to talk about an ACS file rolls off the
tongue much more easily than talking about artcompsci files, let alone art-of-
computational-science files.

Alice: Before we settle this issue, let us think ahead a bit further. The reason
to choose the name ACS is that we want to introduce our ideas as templates for
use in computational science in general, not only in astrophysics. If a chemist
or biologist will start using our system, in future extended versions, they are
likely to use a world like Particle for their own purpose.

Bob: So you are suggesting an extra level of headers, effectively something like
a type of namespace, as you have in C++?



1.6. COMPROMISE 13

Alice: Yes, that would be a good idea, I think. And in that case, I wouldn’t
mind keeping the short version ACS. Even if for some reason some people would
introduce files for Advanced Computational Software that would also be called
ACS, and if we and they would start using XML, there would be no confusion.
If we would get one of their files, than the next line would not have the proper
name space tag that we require for our particular use.

1.6 Compromise

Bob: I’m glad you found a compromise! But how many levels of name space do
you want to introduce? I could argue that some day you will do hydrodynamics
with SPH particles, that may have a rather different structure than our particles.
If we give you total freedom, I bet you will come up with something unwieldy
pretty soon.

Alice: Let me not disappoint you. If we introduce another abbreviation, DSS
for simulations involving dense stellar systems, surely short enough for your
taste, then how about:

begin ACS
begin astrophysics
begin DSS
begin stellar_dynamics
begin particle
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
end

end
end

end

Bob: Are you serious?

Alice: Well, a typical data file will contain quite a number of particles, possibly
with many more variables than we have here, so the total length of the file won’t
change much, even with these three levels of name spaces in between ACS and
particle.

Bob: Even so, this is too much of a proliferation, certainly at this stage.

Alice: Perhaps. I don’t insist that we will implement all these levels right away,
since we don’t know at this stage how our system will evolve. But at least we
would be prepared to move in the direction of a full hierarchy of name spaces, if
the need arises. And this implies that we should not make any design decisions
that would make a future implementation difficult.



14 CHAPTER 1. A HIERARCHICAL DATA FORMAT

Bob: Fair enough. And I am willing to make a compromise by allowing the
DSS level of name space to be present right now. It is indeed short, and it tells
us about the broad type of application within ACS. So this will give us:

begin ACS
begin DSS
begin particle
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
end

end

Alice: If we have to add levels of name spaces in the future, we’ll have to write
a few short conversion programs. One will add the extra levels to old data files,
to make them compatible with new programs. Another conversion program will
subtract the extra levels from new data files in order to be read by old programs.

Bob: That should be easy to do.

1.7 Hierarchical particle structures

Alice: Now that we can define a single particle, we also need a way to define a
whole N-body system.

Bob: Introducing a tag System would be confusing, since it would be too general
a name. How about Nbody?

Alice: Here is an idea. We can use the same tag Particle in an hierarchical
way. A two-body system could be written as:

begin ACS
begin DSS
begin particle
begin particle
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
begin particle
mass = 0.3
position = -1.0 0.0 0.5
velocity = 0.0 -0.2 0.0

end
end



1.8. EXTENDED TAG NAMES 15

end
end

Bob: I see. And the higher-level particle could be interpreted as the center-of-
mass particle of the two-body systems. It could carry its own information. In
this case that would be:

begin ACS
begin DSS
begin particle
mass = 0.4
position = -0.5 0.0 0.5
velocity = 0.0 0.1 0.0
begin particle
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
begin particle
mass = 0.3
position = -1.0 0.0 0.5
velocity = 0.0 -0.2 0.0

end
end

end
end

Alice: Yes, perfect.

1.8 Extended Tag Names

Bob: One problem with using the name particle hierarchically is that it can
lead to confusion as to which particle is which. For example, if you want to
set up two galaxies, and let them approach each other to simulate a collision,
each galaxy would be represented by one particle structure that would in turn
contain many particle’s, one for each body used in the simulation. And the
whole system would be represented by a top particle.

Alice: Ah, here is an idea! We can allow a second name in our particle tag,
to indicate the particular type of particle we are dealing with. Your example
would then become:

begin ACS
begin DSS



16 CHAPTER 1. A HIERARCHICAL DATA FORMAT

begin particle simulation
begin particle galaxy
begin particle star
end
begin particle star
end
. . .
begin particle star
end

end
begin particle galaxy
begin particle star
end
begin particle star
end
. . .
begin particle star
end

end
end

end
end

Bob: Great idea. In that way, programs that only need to know that a particu-
lar object is a particle can just read the first word in the tag. Other programs
that need more information, or a human reader inspecting the data file, can
read the subsequent information; we might even allow arbitrary many tags. An
star on the asymptotic giant branch could be:

begin ACS
begin DSS
begin particle star giant AGB
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
end

end

Alice: I like that. I think we are getting there.



Chapter 2

Particle Output

2.1 Getting Started

Bob: Let’s get some actual work done, after all our talking, last time. Shall we
code up an I/O implementation of our ACS data format we designed yesterday?

Alice: Yes. We definitely need to see a working model, before we can go any
further. Let’s start with the Body class we have been using so far for a single
particle. We may as well strip off everything but the I/O part, and see whether
we can rewrite that into our new format.

Bob: Okay. Let’s call it iobody.rb. And since we will keep adding and chang-
ing things, it is probably a good idea to keep a number of versions around, so
that we can always go back to see what we did earlier. We can start with a
file called iobody1.rb, and after we have some rudimentary functionality we
just freeze it, and don’t modify it anymore. From then on we will work on
iobody2.rb, and so on.

Alice: That’s a good idea, to keep a trail of previous versions.

Bob: So here is our starting point, a copy of what we did before, which we can
call iobody0.rb:

require "old_vector.rb"

class Body

attr_accessor :mass, :pos, :vel, :acc

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

17



18 CHAPTER 2. PARTICLE OUTPUT

def to_s
" mass = " + @mass.to_s + "\n" +
" pos = " + @pos.join(", ") + "\n" +
" vel = " + @vel.join(", ") + "\n"

end

def pp # pretty print
print to_s

end

def simple_print
printf("%24.16e\n", @mass)
@pos.each{|x| printf("%24.16e", x)}; print "\n"
@vel.each{|x| printf("%24.16e", x)}; print "\n"

end

def simple_read
@mass = gets.to_f
@pos = gets.split.map{|x| x.to_f}.to_v
@vel = gets.split.map{|x| x.to_f}.to_v

end

end

2.2 A Single Write Method

Alice: Ah, look, we started with two different ways of outputting our data: we
had a pretty way to list the data, using the pp command, for pretty printing,
and we had a raw way to dump all the significant digits, using simple print.

Bob: Yes, it’s all coming back now. And given that we have introduced a
self-describing format, I guess we don’t need two different methods anymore.

Alice: Even so, it would be nice to control the number of digits. A human
reader may want to see only a few of the most significant digits, whereas you
need full double precision when you want to pipe data in and out of programs
read by the computer, so that you don’t loose accuracy.

Bob: But instead of writing different methods, it would be better to have only
one method, with the number of digits as an argument. Also, let us follow the
idea shown above with to s, let us write the output data first onto a string. We
can then use another method to print out that string, or to write it to a file, as
the case may be.



2.3. WRITING TO S 19

Alice: Good idea. And by calling that method to s, we can type print b for
a particle b, since the Ruby command print by default looks for a member
function to s.

Bob: Let us recall how we want a single particle to appear in the output. We
had decided on:

begin ACS
begin DSS
begin particle star giant AGB
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
end

end

Let’s not worry about how to print the first two lines; those will be taken care
of by a higher-level function. What our to s should do is just write the middle
five lines, the contents of a Body instance.

Alice: But with the proper indentation, which will depend on information that
is only available from outside the iobody.rb context. The calling function
should provide the base amount of indentation, to start with.

Bob: Indeed. And while we’re giving the users the freedom to specify the num-
bers of digits of precision, we may as well allow them to specify the incremental
indentation between the begin particle line and the subsequent lines. How
about something like

def to_s(precision = 16, base_indentation = 0, additional_indentation = 2)
. . .
end

Alice: Good. That makes it clear that we intend to give 16 digits of precision
by default, enough to cover double-precision notation. You’re quick at figuring
out how to implement this, why don’t you fill in the dots?

2.3 Writing to s

Bob: How about this? As we discussed, I’ve put this now in file iobody1.rb:

def to_s(precision = 16, base_indentation = 0, additional_indentation = 2)
subtag = if @type then " "+@type else "" end
indent = base_indentation + additional_indentation



20 CHAPTER 2. PARTICLE OUTPUT

return " " * base_indentation + "begin " + TAG + subtag + "\n" +
f_to_s("mass", mass, precision, indent) +
f_v_to_s("position", pos, precision, indent) +
f_v_to_s("velocity", vel, precision, indent) +
" " * base_indentation + "end" + "\n"

end

Alice: I see that you return the string with all the output information in the
last logical line, which is actually wrapped over the last five lines before the end.

Bob: Yes. I start by adding base indentation number of blank spaces.
Ruby, with the principle of least surprise, lets you do that by typing " " *
base indentation.

Alice: I find it quite surprising that you can just multiply a string with a
number in such a simple way, because I’m not used to that convenience in other
languages. But you’re right, it does look very natural.

Bob: I then have to provide the main tag particle, which I have encoded as
a Body class constant, by adding the following line to the Body class:

TAG = "particle"

The rest of the tag, in our example star giant AGB, which I call the type, in
our case the type of particle, I assume will be stored in an instance variable
@type. By default, when you create a vanilla flavor Body instance, there is no
extra type information, so @type = nil. I added @type to the list of accessor
macros:

attr_accessor :mass, :pos, :vel, :acc, :type

If a type is specified, then the string @type is inserted after the string TAG, with
a space in between, as you can see in the if clause; the else clause does not
add anything.

Alice: I must admit, that first line in to s is a bit confusing, but I guess I can
make sense of it. What appears to the right of the = sign is a normal if-else
construction, but without the usual indentation.

Bob: Yes, it seemed a bit wasteful of space to use five lines for what can be
easily written in just one line. But note that I added the word then, which you
don’t use when you write it over several lines. Ruby insists on using then for
inline constructs like this, since otherwise it would not know how to separate
the condition from the resulting action.



2.4. METHODS F TO S AND F V TO S 21

Alice: But I’m surprised that you can just assign the results of the if-else
construction to a variable.

Bob: A nice feature of Ruby, which will feel very natural once you have used
it a few times. Here is what I could have written more explicitly:

if @type
subtag = " "+@type

else
subtag = ""

end

In inline-version that would have become

if @type then subtag = " "+@type else subtag = "" end

But don’t you think this is more short and simple:

subtag = if @type then " "+@type else "" end

Alice: Shorter yes, but simpler only once you get used to it. Okay, I see what
is happening in this method. You have postponed the real work to the two
methods f to s and f v to s. A nice example of top-down programming!

2.4 Methods f to s and f v to s

Bob: The real work is actually very simple, since we’ve done it already in our
previous version. Here is the first method:

def f_to_s(name, value, precision, indentation) # from floating-point number
" " * indentation +
name + " = " + sprintf(" %#{precision+8}.#{precision}e\n", value)

end

Alice: So I guess f stands for floating-point format, and f to s indicates a
conversion from a floating point number to a string. That makes sense, as a
first step toward the more general to s with converts the whole Body content
to a string. In fact to s could be called body to s.

Bob: Ah, but here is where Ruby’s method notation shines: you invoke the
method to s for a particular Body instance b by writing b.to s, which when
you read it aloud sounds like b-to-s, and does what you expect it to do.



22 CHAPTER 2. PARTICLE OUTPUT

Alice: You’re right. It is all very logical and consistent – and concise as well. I
like it.

Bob: Here is the second method:

def f_v_to_s(name, value, precision, indentation) # from floating-pt vector
" " * indentation + name + " = " +
value.map{|x| sprintf(" %#{precision+8}.#{precision}e", x)}.join + "\n"

end

Alice: I see. Earlier we have used a to v method as an extra method for the
class Array, which is in fact a type of a-to-v method, or array-to-vector. But
as you reminded me, a particular array a will be converted by writing a.to v
which sounds just right. And now you are using the same logic to define a v-to-s
method, from vector to string.

Bob: Yes, and I thought it would be more consistent to stress the fact that
we are not dealing with any type of vector, but with a vector that has floating
point values in it. Hence the name f v to s.

Alice: But we use vectors exclusively for physical quantities, that are always
represented as floating point variables. Is it really necessary to add this f to
stress that we are dealing with floating point numbers? You could as well write
f p n v to s for floating-point-number-valued-vectors.

Bob: Ah, but look at the definition of the Vector class; you will find no mention
there of floating point variables. So it does make sense to add that we are doing
an extra conversion. You can also look at the simple read input method that
we defined before. The position, for example, was read in as follows:

@pos = gets.split.map{|x| x.to_f}.to_v

So you see, from that point of view it is natural to make a combination like
to f v, as we will undoubtedly do later on in our new read method. For our
write method this means that f v to s is natural.

Alice: I see your point. But how about making it a bit more compact, like
fv to s? I would prefer that, it is visually more pleasing.

Bob: But logically less correct, I would say.

Alice: Hmm, I don’t think so. But you wrote it, and it’s not that important,
so let’s do it your way.

2.5 Testing

Alice: We still need a method to do the actual output. Let me try something.
How about this:



2.5. TESTING 23

def write(file = $stdout, precision = 16,
base_indentation = 0, additional_indentation = 2)

file.print to_s(precision, base_indentation, additional_indentation)
end

Bob: Yes, that should work. By default this will print to the standard output,
and if you provide a file name, the output will be stored in that file.

Alice: Let’s test it. Here is a test file test.rb

require "iobody1.rb"

b = Body.new(1, [2,3], [4.5, 6.7])
b.write

And here is the result:

|gravity> ruby test.rb
begin particle
mass = 1.0000000000000000e+00
position = 2.0000000000000000e+00 3.0000000000000000e+00
velocity = 4.5000000000000000e+00 6.7000000000000002e+00

end

Bob: Looks good! Let’s give it a more modest accuracy. Given the order of the
arguments to write, this means that we now have to explicitly supply the file
name stdout:

require "iobody1.rb"

b = Body.new(1, [2,3], [4.5, 6.7])
b.write($stdout, 4)

Let’s test it:

|gravity> ruby test.rb
begin particle
mass = 1.0000e+00
position = 2.0000e+00 3.0000e+00
velocity = 4.5000e+00 6.7000e+00

end



24 CHAPTER 2. PARTICLE OUTPUT

Alice: Just what it should be. Let’s see whether the indentation works:

require "iobody1.rb"

b = Body.new(1, [2,3], [4.5, 6.7])
b.write($stdout, 4, 20, 4)

|gravity> ruby test.rb
begin particle

mass = 1.0000e+00
position = 2.0000e+00 3.0000e+00
velocity = 4.5000e+00 6.7000e+00

end

Bob: Perfect. I think we’ve done enough writing now. Time to start reading
in our new data format!

Alice: I agree. But just to see the whole landscape, can you show me what the
file iobody1.rb looks like now?

2.6 The File iobody1.rb

Bob: My pleasure:

require "old_vector.rb"

class Body

TAG = "particle"

attr_accessor :mass, :pos, :vel, :acc, :type

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

def to_s(precision = 16, base_indentation = 0, additional_indentation = 2)
subtag = if @type then " "+@type else "" end
indent = base_indentation + additional_indentation



2.6. THE FILE IOBODY1.RB 25

return " " * base_indentation + "begin " + TAG + subtag + "\n" +
f_to_s("mass", mass, precision, indent) +
f_v_to_s("position", pos, precision, indent) +
f_v_to_s("velocity", vel, precision, indent) +
" " * base_indentation + "end" + "\n"

end

def f_to_s(name, value, precision, indentation) # from floating-point number
" " * indentation +
name + " = " + sprintf(" %#{precision+8}.#{precision}e\n", value)

end

def f_v_to_s(name, value, precision, indentation) # from floating-pt vector
" " * indentation + name + " = " +
value.map{|x| sprintf(" %#{precision+8}.#{precision}e", x)}.join + "\n"

end

def write(file = $stdout, precision = 16,
base_indentation = 0, additional_indentation = 2)

file.print to_s(precision, base_indentation, additional_indentation)
end

end



26 CHAPTER 2. PARTICLE OUTPUT



Chapter 3

Using the to s Method

3.1 xxx

aha:

require "old_vector.rb"

class Body

TAG = "particle"

attr_accessor :mass, :pos, :vel, :acc, :type

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass.to_f, pos.to_v, vel.to_v
@type = nil

end

def to_s(precision = 16, base_indentation = 0, additional_indentation = 2)
subtag = if @type then " "+@type else "" end
indent = base_indentation + additional_indentation
return " " * base_indentation + "begin " + TAG + subtag + "\n" +
mass.to_s("mass", precision, indent) + "\n" +
pos.to_s("position", precision, indent) + "\n" +
vel.to_s("velocity", precision, indent) + "\n" +
" " * base_indentation + "end" + "\n"

end

def write(file = $stdout, precision = 16,
base_indentation = 0, additional_indentation = 2)

27



28 CHAPTER 3. USING THE TO S METHOD

file.print to_s(precision, base_indentation, additional_indentation)
end

end

aha:

: inccode: .vector.rb

aha!

Note: to f and to v in initializer. Let them find the bug themselves!

Let us run the same test as before:

require "iobody2.rb"

b = Body.new(1, [2,3], [4.5, 6.7])
b.write

And here is the result:

|gravity> ruby test.rb
begin particle
mass = 1.0000000000000000e+00
position = 2.0000000000000000e+00 3.0000000000000000e+00
velocity = 4.5000000000000000e+00 6.7000000000000002e+00

end

and also the more complex test:

require "iobody2.rb"

b = Body.new(1, [2,3], [4.5, 6.7])
b.write($stdout, 4, 16, 4)

|gravity> ruby test.rb
begin particle

mass = 1.0000e+00
position = 2.0000e+00 3.0000e+00
velocity = 4.5000e+00 6.7000e+00

end



Chapter 4

Nested Output

4.1 ACS Output

4.2 Nbody Output

4.3 Example: Plummer’s Model

Nice to get some real results already!

29



30 CHAPTER 4. NESTED OUTPUT



Chapter 5

Particle Input

5.1 How to Read

Alice: Hi, Bob, time to write some input routines?

Bob: I already got started. However, I realize that input is quite a bit more
complicated than output, because the input routine has to recognize hierarchical
structures properly.

Alice: In general, the problem with input is that you have no control over what
you might find. While doing output you can decide to just write positions and
velocities, for example, but while reading in an existing file, you may find that
someone wrote accelerations as well.

Bob: Good point. And if we pipe the data from one program to the other, we
don’t want to loose any data. So it would be best to let the input routine read
in everything, and to let the output routine simply echo whatever it did not
understand.

Alice: I agree. We’ll have to add that to the to s method that we just wrote.
But let us first write the input method, so that we can see what form this blind
data handling will take. What have you written so far?

Bob: I started a new file iobody3.rb, in which I first copied what we had
done already in iobody2.rb. The last thing we did there was to write a write
function, for output to a file or to the standard output. The natural thing to
do next was to write a read function. As before, the default input choice would
be the standard input, but you can also give a file name instead, to read data
from a file.

Remember that our write method looked like this:

def write(file = $stdout, precision = 16,

31



32 CHAPTER 5. PARTICLE INPUT

base_indentation = 0, additional_indentation = 2)
file.print to_s(precision, base_indentation, additional_indentation)

end

So my first thought was that the read method should have the following simple
form:

def read(file = $stdin)
. . .
end

since precision and indentation will be already provided by the data that are
being read in.

Alice: Sounds plausible.

5.2 Passing the Type

Bob: However, I realized that we need an extra argument. It took me a while
to figure this out, and I saw it only when I tried to imagine how the method
read will be called. At some higher level, a command will be given to read a
whole data file, which will start as something like

begin ACS
begin DSS
begin particle globular_cluster
. . .
begin particle star giant AGB
mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end
. . .
end

end
end

On that level, the first two lines will be read and discarded, since they only
function as a safety check, guaranteeing that we are dealing with the right type
of data file. This higher-level method will then read in the line

begin particle globular_cluster



5.2. PASSING THE TYPE 33

and only at that point it becomes clear that the read method of the Body class
has to be invoked. But at that point the extra information containing the type
of the particle has already been read in. The third line tells us that the particle
stands for the center of mass of a globular cluster, which contains many other
particles. And the next line that starts with begin particle contains our
previous friend, the asymptotic giant branch star.

Alice: I see what you mean. In the case of that last star, the method read for
the star will be asked to start reading the next input lines, and it will only see

mass = 0.1
position = 1.0 0.0 0.5
velocity = 0.0 1.0 0.0

end

It can hand control back to the calling function when it encounters the first end,
but indeed it will never know that it was an AGB star.

Bob: Exactly. So that additional information has to be passed to the star. The
easiest and most general way is to pass the whole last line that was read in by
the calling function. I therefore decided that the read method should have the
form

def read(header, file = $stdin)
. . .
end

where in the case of our star the variable header contains the whole line:

begin particle star giant AGB

Alice: That makes sense.

Bob: By the way, you mentioned that control can be handed back to the
calling function when the first end is encountered, but that is not quite true.
As we saw above, a single particle block can contain several other particle
subblocks. For example, when the calling function asks the first particle, of type
globular cluster, to read in its data, that particle will encounter the stars that
belong to the globular cluster. For each star, it will call the read method for the
appropriate Body instance, and continue after that method returns. But since
that star’s read method has gobbled up its own end line, the globular cluster
read method will never see those embedded end lines. Indeed, the first end it
encounters will be its own proper end.

Alice: So I was right, but for the wrong reason.

Bob: It’s always nice to be lucky!

Alice: I’d rather be right, though. Can you show me your read implementa-
tion?



34 CHAPTER 5. PARTICLE INPUT

5.3 Handling the Header

Bob: Here it is:

def read(header, file = $stdin)
raise unless header =~ /^\s*begin\s+particle/
a = header.split
if a.size > 2
a.shift
a.shift
@type = a.join(" ")

end
loop {
s = file.gets
name = s.split[0]
case name
when /^mass/
@mass = s_to_f(s)

when /^position/
@pos = s_to_f_v(s)

when /^velocity/
@vel = s_to_f_v(s)

when "begin"
subread(file, s)

when "end"
break

else
raise

end
}

end

Alice: I see. First you process the header which tells you what type of particle
you are dealing with and then you enter into a loop called loop that processes
subsequent lines from the file or input stream, until you encounter a final end.

Bob: Yes, and the first thing to do is to check whether the header, which is
really an echo of the last line read, really starts with the words begin particle.
In general there will be white space in front, because of the indentation, and one
or more pieces of white space in between begin and particle but everything
else is only allowed to follow those two words.

What you see at the right hand side of the first line of the method is the raise
command, which raises an error if the header does not have the correct form.
In Ruby, unless is the opposite of if, a nice feature, since otherwise we would



5.4. HANDLING OTHER LINES 35

have needed to say “if not of the correct form” and “unless of the correct form”
is more natural.

The combination =∼ compares a string on the left with a regular expression
on the right, and returns a nil value if the string does not correspond to the
regular expression, with is surrounded by two slashes.

Alice: Let me try to remember my regular expressions. The first up arrow ˆ
means that it must match the beginning of the string. Then \s stands for a
white space, a blank or a tab, followed by a * which tells us that we can expect
zero or one or more of those white spaces, while the + after the second \s tells
us that there should be at least one, and possible more, white spaces between
begin and particle.

So for a string to match this regular expression, it should start with zero or
more white spaces, followed by the word begin, followed by one or more white
spaces, followed by the word particle, and optionally followed by whatever
else you like.

Bob: Indeed. Now if that test is passed successfully, the header is split of by
the String method split into an array of words, as we have seen before. If
there are only the two words begin and particle no further action is taken.
But if there is at least one more word, then all those extra words are glued
together with join, to form the type of the particle, stored in the instance
variable @type. We have to give join an argument to separate the individual
words, and a single blank space is the most natural choice.

5.4 Handling Other Lines

Alice: So now we enter a loop, I presume. What does loop mean?

Bob: It stands for an endless loop. In C you would write while(1) or for{;;}
depending on your taste, but Ruby has a more clean and direct construct. The
only way to leave the loop loop is to break out explicitly: you break with break.

Alice: Ruby seems to do exactly what you tell it to do! The case statement
reminds me of the switch statement in C and C++.

Bob: Yes. In this case, case is used to compare the first word of each new line
with the three legal choices we have so far for the names of input and output
data: mass, position and velocity. When one of these choices is encountered,
the appropriate helper method kicks in, a simple translator to floating point for
the mass, and a translator to a floating point vector for position and velocity.
Here is the first one:

def s_to_f(s) # string to floating-point number
s.split("=")[1].to_f

end



36 CHAPTER 5. PARTICLE INPUT

This time we give split an explicit argument. The default has been to consider
white space as the separator between words, but now we use an equal sign = as
a separator. The name of the variable, in our case the string "mass" is returned
as the value of s.split("=")[0]. Everything to the right of the equal sign, in
our case the value of the mass, is returned as s.split("=")[0], and promptly
converted to floating point format with .to f.

Alice: Everything, unless there are more equal signs, in which case the following
pieces would wind up in s.split("=")[2], etc.

Bob: True. Normally there should be one and exactly one equal sign, and
I could have checked that by checking and raising an error condition in case
s.split("=").size != 2. However, at this stage I’m happy to live a bit dan-
gerously. And besides, the extra stuff will be ignored, since it is not used.

Alice: Even so, I wouldn’t want to continue if there is was an second equal
sing in the input line, since that would mean that there would be something
very seriously wrong. Let’s get back to error handling soon; we really should
teach the students some defensive programming, instead of just assuming that
the world is a paradise, and that nobody will hand you wrong data.

Bob: I agree. But first things first: let’s get things to work. Here is my vector
version:

def s_to_f_v(s) # string to floating-point vector
s.split("=")[1].split.map{|x| x.to_f}.to_v

end

As before, it uses the map method to convert each component of the vector from
a string to a floating point number.

Alice: And when you encounter a new begin before you have reached the end
of the current particle data input, you interpret that as a new particle that is
contained in the current particle, in the same way that a star is contained in a
star cluster.

Bob: Indeed. Such a new particle should normally be indented one level further,
since it lies one level deeper in the hierarchy of particles, but I don’t check for
that, since I don’t want to insist on a particular style of indenting. Style is nice
for human readers, but computers should be able to handle anything logically
reasonable.

Alice: And subread is the method that handles those particles deeper in the
hierarchy, under the current particle. What does it do?

Bob: I don’t know yet. I just put it there as a stub, a place holder to remind us
that we still had some work to do there. Hmm. Now that you ask me, I guess



5.5. TESTING 37

it should just be read again, a recursive invocation of the same method that we
are currently executing.

Alice: Yes, but you first have to know where to put the date you read for the
daughter particle. I think you will have to create such a particle, to start with,
and then hand execution to that particle.

Bob: That sounds right. Let’s do that in a moment.

Alice: Well done! This is clean and elegant, but I’m still worrying about
handling unusual lines. If somebody hands you a line with

acceleration = 0.1 -0.3

your program will raise an error. But there is nothing wrong with providing
extra information. How about creating a little scratch pad where you store all
the lines for which you did not know what to do with them. You can just keep
this scratch pad lying around, and by the time you do an output, you echo its
contents so that the information is passed on correctly to the next function,
which may know what to do with it.

Bob: That is a good idea too. Let’s do that in a moment too, in another
moment.

5.5 Testing

Alice: Did you test your code?

Bob: Not yet, but it’s high time. Let’s try a write-read cycle.

Alice: You mean, you will output the content of one Body instance with its
write method and then read it in again into another Body instance using that
instances read function?

Bob: Conceptually, yes, but in practice it is more complicated. Remember that
we haven’t yet written the higher level function that handles the top level lines
begin ACS and all that. That function gobbles up not only those higher levels
lines, but also the header of the particle data. Let’s see.

Alice: Ah, of course, you’re right. This means that we will have to pass the
header by hand, for now, in the read command, after which we can feed in the
remaining lines from the standard input, or from a file, if we wish.

Bob: Exactly. Let’s check it, by writing another test file test.rb:

require "iobody3.rb"

b = Body.new
b.read("begin particle star giant AGB")
b.write



38 CHAPTER 5. PARTICLE INPUT

And here is the result:

|gravity> ruby test.rb
mass = 1
position = 2 3
velocity = 4.5 6.7
end

begin particle star giant AGB
mass = 1.0000000000000000e+00
position = 2.0000000000000000e+00 3.0000000000000000e+00
velocity = 4.5000000000000000e+00 6.7000000000000002e+00

end

Alice: Just what it should be. After typing in those four lines, with whatever
indentation, b.write generates the right output. Congratulations!

Bob: Let’s see what happens if we give a wrong input line.

Alice: Okay. How about giving it a supersymmetric particle, for a change?

require "iobody3.rb"

b = Body.new
b.read("begin sparticle")
b.write

And here is the result:

|gravity> ruby test.rb
./iobody3.rb:40:in ‘read’: unhandled exception
from test.rb:4

Bob: It works, but I admit, this type of error message is less than helpful.

Alice: A third thing to do in yet another moment. So here is our to-do list:

• implement a scratch pad

• write the subread method

• improve the error handling

Bob: And then of course we have to write the higher level read functions to.
Okay, one thing at a time!



Chapter 6

A Scratch Pad

6.1 Extra Information

Bob: Our first to-do time was to implement a scratch pad, to contain unrec-
ognized data that can be read in, and to reproduce those safely at the time of
output. I will copy the file iobody3.rb, with which we have been working so
far, into a new file iobody4.rb.

Alice: Let’s call the scratch pad rest, since it will contain the rest of all that we
read in, whatever doesn’t fit our expectations. We can make it one big string,
to which we keep adding whatever input line that we don’t recognize.

I don’t think we should put any a priori limitations on what such lines could
contain. Obvious choices are lines like

acceleration = 0.1 -0.3
density = 345.18

for physical quantities, or something like

neighbors = 15 18 23

for a list of nearest neighbors, with particles identified by their numbers, or in
any other way for that matter, for example:

neighbors = star5 star7 GMC3 triple8

As long as other appropriate programs can handle that format, the I/O routines
for the Body class don’t have to worry about them.

39



40 CHAPTER 6. A SCRATCH PAD

Bob: But how do you know which line makes sense? You don’t have the
information to know what all the other programs can handle. What if someone
was planning to write an email, reporting on a run, and somehow by mistake
got the text mixed up with the input for a Body instance. Surely it would be
an error to read in:

velocity = 1 0
acceleration = 0.1 -0.3
Hi Joe! Look what a cool run I just produced.
This AGB star is out of control! Man, it’s
evolving with a time step much less than a year,
and shrinking. This way we’ll never reach the
horizontal branch. Meanwhile, wanna come over
for a beer?

Alice: Actually, this does not have to count as an error at all. What if the
writer is planning to send Joe a data set, and would want to communicate to
Joe what the data are all about? It would be much safer to add this message
to the actual data file, rather than sending it in a separate email. We all know
how many emails we get every day, and how difficult it is to retrieve the right
one, after weeks or months.

Bob: But there is no way of knowing the form that a human narrative can take.
People might write !@#*!! if they are in a bad mood. By letting people write
what they want you would allow literally any line!

6.2 Two Possibilities

Alice: Why not?

Bob: I know a good reason why not: next thing you know is to see someone
type begin position, for example the last three lines above could have equally
well been:

and shrinking. This way we’ll never reach the
begin position of the horizontal branch. Meanwhile,
wanna come over for a beer?

Remember that we allowed both

position = 1 2

and also



6.2. TWO POSSIBILITIES 41

begin position
1 2

end

So the above version of the email chat would be very dangerous.

Alice: You have a point there. So we have to be a bit more careful. How
about allowing only two types of ‘rest’ lines: either such a line should have an
equal sign in it, to indicate that it is of the form name = value, or its first word
should be begin, in which case we read in everything until we encounter the
next same-level end.

So the above data could take as a legal form:

velocity = 1 0
acceleration = 0.1 -0.3
begin story
Hi Joe! Look what a cool run I just produced.
This AGB star is out of control! Man, it’s
evolving with a time step much less than a year,
and shrinking. This way we’ll never reach the
begin position of the horizontal branch. Meanwhile,
wanna come over for a beer?

end

Bob: I like the idea of extending the notion of self-describing data. Your story
idea will introduce self-chatting data!

Alice: I prefer self-narrating data. Good! Shall we introduce a Story class?

Bob: Huh? Why? We had just decided that we will put all the rest lines on a
big pile, and store that in a string called rest. Why would you suddenly want
to give extra structure to that string??

Alice: Because we have to distinguish the story structure above from other un-
recognized structures. For example, imagine that some other program includes
information about a few multipoles for the internal structure of our star. That
might take a form such as:

begin multipoles
begin monopole
1.5

end
begin quadrupole
0.3

end
end



42 CHAPTER 6. A SCRATCH PAD

Now there are two possibilities. Here is the first one. You can read in the rest
data in a hierarchical way, in which you keep track of how many levels deep you
go with the begin and end statements. In that case you can read the complete
multipole information, even if your program has not the foggiest idea of what
multipoles are, just by counting levels and stopping when you encounter the
first end on the same level as the begin that was associated with multipoles.

Using the first possibility, however, will let your program crash when you try to
read in the narrative above, starting with begin story. The input mechanism
sees begin position later on, and it will presume that the last end belongs to
the same level of begin position, so it will keep searching for the extra end
that it expects to correspond to begin story.

The second possibility is to ignore any begin statement at the start of a line,
and just to keep reading on till you find an end, all alone on a line. That would
solve the problem for the story above. And in practice, even if you would write
a single ”end” at the end of a sentence, most likely you would put a period or
question mark or exclamation mark after the end.

So the second possibility is pretty safe, although not completely safe, as far as
a story goes. But what is much worse, this second method fails miserably when
reading in the multipoles. It would stop at the first end, then assume that begin
quadrupole would be a new item, read that in until its proper end, and then
it would encounter the final end. At that point it would think it had read the
whole particle structure, which is not the case.

6.3 More Possibilities

Bob: I see. Hmmm. That is tricky. And you were thinking to solve that by
introducing a special Story class, for which you use the second solution, whereas
you use the first solution for all other cases?

Alice: Yes, that was my first thought. But now that I have put it all on the
table, I’m not so sure whether that would be a good solution. For one thing,
it is not completely fail-safe: an email, say, can indeed contain the word "end"
instead of "end.". Many young people these days seem to completely ignore
punctuation.

Bob: And many old people can leave out a period, as a typo, especially when
they forget to bring their reading glasses.

Alice: Just you wait! Before too long you’ll have to choose between bifocals
and reading glasses. But I guess we both agree that my initial thought is not
safe enough. Hmmm.

Bob: There is another problem with your initial thought. What if you want
to keep a log of previous commands, as in the Unix history mechanism? You
might want to include that as



6.3. MORE POSSIBILITIES 43

begin history
make_binary -M 2 -m 3
integrate -t 10
find_orbital_elements

end

It is possible that such a list of commands would include a command called
begin. Why not? So it is not only the begin story that would need a Story
class. you would need a History class, and so on, one class each for each
different type of application. I don’t like that.

Alice: Well, what else do you propose?

Bob: One possibility would be to check indentation. If you encounter an end
on the same level of indentation as the rest of the lines within a block, it does
not mean that the block ends; it only counts as a real end if it is indented by
one or more spaces less. Similarly, a begin should only signify the beginning of
a new block if the next line is indented by one or more spaces, compared to the
line starting with begin.

Alice: But then the higher-level program should pass more than just the header,
as we have implemented above. It should read one more input line before it can
decide that begin particle really meant the start of a new particle structure,
or whether it was part of a chatty email as we saw above. But once it had read
in that line, it has to pass it to the read function of Body. So we would get
something like

def read(header, next_line, file = $stdin)
. . .
end

And what is worse, instead of going directly into the loop loop, you would have
to first process this next line before you can pick up more lines with file.gets

Bob: I agree, that will make things ugly. Hmmm again. Well, perhaps we
can invent more complex words than begin and end. If we write acs begin or
even !@#*!! acs begin and similarly !@#*!! acs end we would be safe enough.
What is the chance that someone would type those combination of characters
by chance in a chatty email?

Alice: Not in an normal email, no. But if someone will include a piece of
natural language text to explain what a bunch of data represent, and if the
data are in our acs format, chances are that that person may also explain how
to read and write those data. And, guess what, that person will have to write
exactly the expressions !@#*!! acs begin and !@#*!! acs end . . .

Bob: Yes, that is a catch. I don’t see an way around that. But hey, wait, there
is a way! We can ask this person to write something like \!@#*!! acs begin,
and provide a way to translate that into the proper acs begin when the story
is being processed for a human reader.



44 CHAPTER 6. A SCRATCH PAD

But the more I think about that, the more I dislike the idea. Who would want
to look at files that have \!@#*!! acs begin and \!@#*!! acs end everywhere
in them? ACS will get a bloody bad reputation with what looks like curse words
sprinkled in everywhere.

6.4 A Box

Alice: It seems that we’re running out of options.

Bob: And yet we have to solve it, at least if we want to allow self-narrating
data. I must say, I got warmed to the idea, and I don’t like to give that up, just
because we have some difficulty figuring out how to implement it.

Alice: You said you didn’t like to make a whole slew of exceptional cases, for
begin story and begin history and what not. Here is an alternative. Let us
protect the content of a story or a history or whatever by somehow putting it
into a safe box, wrapping it up in something . . .

Bob: . . . by putting four lines around the text as in a children’s drawing? I
wish we could do that.

Alice: A line!

Bob: A line?

Alice: You found the solution! Or more accurately, one quarter of what you
just found is the solution. We need to put a vertical line in front of the text, at
the left-hand margin. In other words, a comment symbol in front of each line.

Bob: Ah, of course, like you use a # in Ruby or a C in Fortran or a // in C++
or a percent sign in Latex. Yes, I like that. In that way we can allow any part
of a story or history or anything else to be commented out, so to speak, making
both begin and end invisible for the I/O routines.

Alice: So our example for the rest data could become

velocity = 1 0
acceleration = 0.1 -0.3
begin story
|Hi Joe! Look what a cool run I just produced.
|This AGB star is out of control! Man, it’s
|evolving with a time step much less than a year,
|and shrinking. This way we’ll never reach the
|begin position of the horizontal branch. Meanwhile,
|wanna come over for a beer?

end

You could it even put in a real box, as a children’s drawing, if you want:



6.5. ONWARD 45

velocity = 1 0
acceleration = 0.1 -0.3
begin story
+----------------------------------------------------+
|Hi Joe! Look what a cool run I just produced. |
|This AGB star is out of control! Man, it’s |
|evolving with a time step much less than a year, |
|and shrinking. This way we’ll never reach the |
|begin position of the horizontal branch. Meanwhile,|
|wanna come over for a beer? |
+----------------------------------------------------+

end

Bob: Very funny. But yes, you could use any symbol you like. The least
obtrusive would be a period, just as the Unix system does for files that are
normally invisible:

velocity = 1 0
acceleration = 0.1 -0.3
begin story
.Hi Joe! Look what a cool run I just produced.
.This AGB star is out of control! Man, it’s
.evolving with a time step much less than a year,
.and shrinking. This way we’ll never reach the
.begin position of the horizontal branch. Meanwhile,
.wanna come over for a beer?

end

Alice: And whatever symbol you use, nothing will match begin and end any-
where. I think we have found a fail-safe solution! A nice surprise, after we both
thought that we were stuck.

6.5 Onward

Bob: Isn’t it interesting? You can use comments in a program for many years
and never give it much thought. But when you have to design a special data
format, as we are doing for ACS, you are in fact designing a kind of mini-
language. So we have just reinvented the wheel! Now I can appreciate much
better the role of comment conventions in computer languages.

Alice: Of course, anyone using the data will still have to find a way to strip the
comment symbols off, if they want to work with clean text.

Bob: However, that is less urgent. In this last example, the leading periods are
almost invisible.



46 CHAPTER 6. A SCRATCH PAD

Alice: For some purposes, yes, but for other applications I’m sure that you may
want to implement a way to get rid of the comment characters.

Bob: If you like. But first onward to get to graphics. Any good software
project can be stalled completely by implementing a surplus of features before
you really need them – and most of those turn out not to be want you want
anyway, when you later look back on them. I’ve seen that happening.

Alice: I agree. Where were we? We decided to create a scratch pad named
rest for all the rest of the lines that Body could not understand.

Bob: How about this: we can add an instance variable @rest for the Body class,
in the form of one big string. Initially each Body will be created with an empty
string:

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel
@type = nil
@rest = ""

end

The only line that we need to change in the read method, is to replace the old

else
raise

in iobody3.rb by

else
if s =~ /^\s*\w+\s*=/
@rest += s

else
raise

in our new iobody4.rb

The first line tests whether the unknown line has an equal sign in it. If so, the
whole line is appended to the @rest string. If not, it really is an error.

Alice: Simple indeed! But we have to make a change in our output mechanism
as well.

Bob: That should be simple too. After the current lines in to s that handle
the known quantities



6.6. TESTING 47

f_to_s("mass", mass, precision, indent) +
f_v_to_s("position", pos, precision, indent) +
f_v_to_s("velocity", vel, precision, indent) +

we can add a similar line for the unknown quantities, where the only information
that needs to be passed in the amount of indentation indent:

rest_to_s(indent) +

and if I regularly express myself as follows

def rest_to_s(indent)
@rest.gsub(/^\s*/, " "*indent)

end

it should all work. The command gsub globally substitutes however many initial
blank spaces there may be in any line within the string @rest by the proper
indentation length.

6.6 Testing

Alice: Let’s see whether it all works.

Bob: I’ll write a test file test.rb:

require "iobody4.rb"

b = Body.new
b.read("begin particle star giant AGB")
b.write

And here is the result:

|gravity> ruby test.rb
mass = 1
nearest_neighbor = 365
position = 2 3
velocity = 4.5 6.7
density = 3.2e-07

end



48 CHAPTER 6. A SCRATCH PAD

begin particle star giant AGB
mass = 1.0000000000000000e+00
position = 2.0000000000000000e+00 3.0000000000000000e+00
velocity = 4.5000000000000000e+00 6.7000000000000002e+00
nearest_neighbor = 365
density = 3.2e-07

end

Alice: Looking good! Shall we try some bad indentation, to see whether it will
get corrected?

|gravity> ruby test.rb
mass = 1

nearest_neighbor = 365
position = 2 3

velocity = 4.5 6.7
density = 3.2e-07

end
begin particle star giant AGB
mass = 1.0000000000000000e+00
position = 2.0000000000000000e+00 3.0000000000000000e+00
velocity = 4.5000000000000000e+00 6.7000000000000002e+00
nearest_neighbor = 365
density = 3.2e-07

end

Bob: So far, so good. Let’s try to give a story line, without a proper begin
story header, to see whether we get a proper error message.

|gravity> ruby test.rb
mass = 1
nearest_neighbor = 365
position = 2 3
velocity = 4.5 6.7
this is a rather large star
density = 3.2e-07

end
./iobody4.rb:71:in ‘read’: unhandled exception
from ./iobody4.rb:53:in ‘loop’
from ./iobody4.rb:53:in ‘read’
from test.rb:4

Alice: Indeed: that is indeed the number of the last line in



6.6. TESTING 49

else
if s =~ /^\s*\w+\s*=/
@rest += s

else
raise

But we should really provide a more user friendly error message, that does not
require counting lines of source code.

Bob: Let us first handle proper stories, starting with begin story, as well
as other particles that might be embedded within our current particle data, as
members of a star cluster.

Alice: Yes, and these two points are indeed what was left from our previous
todo list:

• write the subread method

• improve the error handling



50 CHAPTER 6. A SCRATCH PAD



Chapter 7

Nested Input

7.1 xxx

TODO: HIGHER LEVEL ACS READ-IN, HASH TABLE, file testing appen-
dices, XML versions of ACS format I/O, also HISTORY

nil nil

51



52 CHAPTER 7. NESTED INPUT



Chapter 8

Introduction

8.1 xxx

|gravity> ruby sim2acs.rb < cube1.in > tmp1.out
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
|gravity> ruby sim2acs.rb < cube1.in | ruby acs2sim.rb | ruby sim2acs.rb > tmp2.out
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from ACS data format to simple N-body format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
|gravity> diff tmp[12].out

53



54 CHAPTER 8. INTRODUCTION

|gravity> ruby sim2acs.rb < cube1.in | ruby acs2sim.rb > tmp3.out
==> Conversion from ACS data format to simple N-body format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
|gravity> ruby sim2acs.rb < cube1.in | ruby acs2sim.rb | ruby sim2acs.rb | ruby acs2sim.rb > tmp4.out
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from ACS data format to simple N-body format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from simple N-body format to ACS data format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
==> Conversion from ACS data format to simple N-body format <==
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2
|gravity> diff tmp[34].out

8.2 xxx



Chapter 9

Literature References

[to be provided]

55


