
The Art of Computational Science

The Kali Code

vol. 6a

User Interface:

Command Line Arguments I

Piet Hut and Jun Makino

September 13, 2007

Contents

Preface 7

0.1 Acknowledgments . 7

1 Command Line Arguments 9

1.1 A New Approach . 9

1.2 Flexibility . 10

1.3 Various Options . 11

1.4 A Critical Attitude . 12

1.5 An Overview . 15

1.6 A Beautiful Violation . 17

1.7 Arguments about Arguments . 17

2 Encapsulating Information 21

2.1 A Soft Violation . 21

2.2 Four Occurrences . 22

2.3 Danger . 23

2.4 A Matter of Principle . 24

2.5 An Option Block . 25

2.6 Growing a Manual . 27

2.7 An Full Option List . 28

3 Implementation: Clop Entry Points 33

3.1 A New Driver . 33

3.2 Invoking the Parser . 34

3.3 The Clop Class . 35

3

4 CONTENTS

3.4 Creating a Clop Instance . 37

3.5 Parsing Option Definitions: the Idea 37

3.6 Parsing Option Definitions: the Method 38

3.7 Parsing Command Line Options: the Idea 40

3.8 Parsing Command Line Options: the Method 41

3.9 Printing Values . 43

4 The First Journey: Clop, the Non-help Part 45

4.1 Three Journeys . 45

4.2 Inspecting find option . 46

4.3 The Last Cryptic Bit . 48

4.4 Inspecting parse option . 49

4.5 Extracting the Value: Normal Case 50

4.6 Extracting the Value: Compact Case 51

4.7 Interesting or Confusing? . 52

4.8 Extracting the Value: Vector Case 54

4.9 Inspecting initialize global variables 55

5 The Second Journey: Clop option 59

5.1 Code Listing . 59

5.2 Parsing An Option Definition . 61

5.3 Are we Done Yet? . 63

5.4 A Non-Greedy Wild Card . 64

5.5 Extracting the Name from a Definition 66

5.6 Extracting the Content from a Definition 67

5.7 Two Types of Mistakes . 68

6 More Parsing of Single Lines 71

6.1 Recognizing the Type . 71

6.2 Default Values . 73

6.3 A Matter of Principles . 74

6.4 Descriptions . 76

6.5 Reflections on Ruby . 77

CONTENTS 5

6.6 A Comic Book Code Line . 78

6.7 Evaluating Values . 80

7 Initial State Output 83

7.1 The to s Method . 83

7.2 The Header Option . 84

7.3 A Boolean Option . 86

7.4 A Hack . 86

7.5 A Vector Option . 88

7.6 A Pyramid of Evaluations . 89

8 The Third Journey: Clop, the Help Part 91

8.1 Two forms of Help . 91

8.2 Help for Selected Options . 92

8.3 Parsing Help . 93

8.4 Printing Help: the Idea . 94

8.5 Printing Help: the Method . 95

8.6 What is Needed When . 97

8.7 The Finishing Touch . 98

9 A Built-In Test Facility 101

9.1 Testing Without a Driver . 101

9.2 Required Options . 102

9.3 A Boolean Option . 103

9.4 A Vector Option . 105

9.5 A Star Type Option . 106

9.6 No Comment . 107

9.7 The Answer . 108

10 The Clop Code 111

10.1 Test Drivers . 111

10.2 Code Listing . 112

11 Literature References 121

6 CONTENTS

Preface

The current volume contains a rather fancy parser of command line arguments,
together with a detailed help facility. We have found such a system to be
indispensable when running large numbers of simulations, using different codes
to generate initial data, evolve the N-body systems, and analyze the results.
Therefore, we decided to take the time to develop and introduce the whole
system here in detail. An additional advantage is that we can show the power
and practical usefulness of Ruby, not only for prototyping the scientific modules
in a simulation, but also for helping out with the important task of administering
N-body runs.

A good piece of software should administer the runs in such a way as to keep
the astrophysicists protected from the details, so that they can give their full
attention to the scientific problems at hand. If you are not interested in the
details of how this administration is carried out, it would be sufficient to just
skim this volume, reading only chapters 1, 2, and 11. However, if you plan to
use Ruby extensively for your own simulation needs, in new and creative ways,
it probably will pay off to spend some time looking at the other chapters as
well, in order to get an idea of the rich pallet of possibilities that Ruby has to
offer. It may well give you some new ideas for your own applications.

0.1 Acknowledgments

Besides thanking our home institutes, the Institute for Advanced Study in
Princeton and the University of Tokyo, we want to convey our special gratitude
to the Yukawa Institute of Theoretical Physics in Kyoto, where this volume was
written, during a visit in June 2004, made possible by the kind invitations to
both of us by Professor Masao Ninomiya.

We thank Bill Guindon for his comments on the manuscript.

Piet Hut and Jun Makino

Kyoto, July 2004

7

8 CONTENTS

Chapter 1

Command Line Arguments

1.1 A New Approach

Bob: Hi Alice! Look what I’ve done, since we last met.

Alice: What have you done?

Bob: I added command line arguments to our latest N-body code. I was getting
so tired of having to edit a line in our driver file, each time we were doing a
different run. It was high time that we made this switch. Now we can instruct
the code on the command line what options and value to give to the evolve
method.

Alice: Can you show me what you did?

Bob: Here is the file rkn1.rb, which reads the command line, and then invokes
evolve. But before showing you the contents, let me first show you how it
works. Here is an example:

|gravity> ruby rkn1.rb -o 2.1088 -e 2.1088 -t 2.1088 < figure8.in
eps = 0
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

9

10 CHAPTER 1. COMMAND LINE ARGUMENTS

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

You can see from the values that were echoed that I just ran a fourth-order
Runge-Kutta, for 1/3 of an orbit of a figure-eight triple configuration. And by
the way, you can see from the output that I have reproduced the same positions
and velocities as before, as a test that the code still works correctly.

1.2 Flexibility

Alice: So how do you ask the code to use, say, a leapfrog integrator instead of
your default fourth-order Runge-Kutta, perhaps with a ten times smaller time
step?

Bob: Easy! This is what you type:

|gravity> ruby rkn1.rb -o 10 -e 2.1088 -t 2.1088 -m leapfrog -d 0.0001 < figure8.in
eps = 0
dt = 0.0001
dt_dia = 2.1088
dt_out = 10.0
dt_end = 2.1088
init_out = false
x_flag = false
method = leapfrog
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.1088, after 21088 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

1.3. VARIOUS OPTIONS 11

E_tot - E_init = -6.35e-13
(E_tot - E_init) / E_init = 4.93e-13

You see, I added the option -o 10 to suppress the snapshot output. This makes
the interface much more flexible than it was before.

Alice: What exactly is the meaning of -o, and so on?

Bob: rather than answering you, let me ask the code. It even has a help
function:

|gravity> ruby rkn1.rb -h
usage: rkn1.rb [-h (for help)] [-s softening_length] [-d step_size]

[-e diagnostics_interval] [-o output_interval]
[-t total_duration] [-i (start output at t = 0)]
[-x (extra debugging diagnostics)]
[-m integration_method]

You see now what I did. By adding the option -o 10 to the command line in
my last little run above, I asked the program to postpone the first output to the
time t = 10 which is later than the time t = 2.1088 at which I had ordered
the program to halt and to give energy diagnostics. In that way, I suppressed
the output of the snapshot, so that we could concentrate on looking only at the
energy.

1.3 Various Options

Alice: Adding a help facility is a great improvement, I agree! But what would
happen if I would have typed --help instead? I would not have guess that the
help option would have been the old-fashion Unix-style -h.

Bob: Try it!

Alice: Okay:

|gravity> ruby rkn1.rb --help
usage: rkn1.rb [-h (for help)] [-s softening_length] [-d step_size]

[-e diagnostics_interval] [-o output_interval]
[-t total_duration] [-i (start output at t = 0)]
[-x (extra debugging diagnostics)]
[-m integration_method]

Ah, the same answer. Good! But your help answer is not complete: it suggests
that you can only use single letter options.

12 CHAPTER 1. COMMAND LINE ARGUMENTS

Bob: You’re right. I could have added that explicitly. But in a way, it is there
already. Try your ”--” notation with the longer words that appear in the help
answer.

Alice: You mean:

|gravity> ruby rkn1.rb --total_duration 1 --output_interval 10 < figure8.in
eps = 0
dt = 0.001
dt_dia = 1
dt_out = 10.0
dt_end = 1.0
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 1, after 1000 steps :
E_kin = 1.22 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

I yes, that indeed works. But what about the -i option? That was a flag, if I
remember it correctly; if you set it, you got the initial output. What is the long
version of the command to set the flag?

Bob: Let me look at the code. Ah, the long option is --initial output. I
could have written that in the help output, but I decided that that would be too
cryptic. If you would have gotten [-i initial output] as part of the answer,
that probably would not made much sense. Instead, I let the help option echo
the sentence [-i (start output at t = 0)].

1.4 A Critical Attitude

Alice: Well, I applaud the idea of using command line options, and I also very
much like the addition of a help function. Both aspects are essential in a good
user interface. However, if you don’t mind me saying so, your current help
facility still needs a lot of help.

Bob: It’s just my first try. In fact, please be critical! I would love to provide a
good user interface. For one thing, if we don’t, my students will keep knocking
on my door to ask me how to use all these codes. If we can make things more

1.4. A CRITICAL ATTITUDE 13

transparent, it will actually save me a lot of time, if that means that the students
can figure out things for themselves.

Alice: You really want me to be really critical? You may regret asking!

Bob: Sure, go ahead, be critical!

Alice: Okay! Then I won’t hold back. I already mentioned a few things that
were not clear, and certainly not yet documented, but now that you challenge
me, why don’t we go through the code you wrote, and I will critically appraise
your whole approach!

Bob: You look as if you mean business. But I have nothing to hide. Here is
the code, in file rkn1.rb It is only a couple pages. Let me print it out first, and
then we can walk through it.

require "rknbody.rb"

def print_help
print "usage: ", $0,
" [-h (for help)] [-s softening_length] [-d step_size]\n",
" [-e diagnostics_interval] [-o output_interval]\n",
" [-t total_duration] [-i (start output at t = 0)]\n",
" [-x (extra debugging diagnostics)]\n",
" [-m integration_method]\n"

end

require "getoptlong"

parser = GetoptLong.new
parser.set_options(
["-d", "--step_size", GetoptLong::REQUIRED_ARGUMENT],
["-e", "--diagnostics_interval", GetoptLong::REQUIRED_ARGUMENT],
["-h", "--help", GetoptLong::NO_ARGUMENT],
["-i", "--initial_output", GetoptLong::NO_ARGUMENT],
["-m", "--integration_method", GetoptLong::REQUIRED_ARGUMENT],
["-o", "--output_interval", GetoptLong::REQUIRED_ARGUMENT],
["-s", "--softening_length", GetoptLong::REQUIRED_ARGUMENT],
["-t", "--total_duration", GetoptLong::REQUIRED_ARGUMENT],
["-x", "--extra_diagnostics", GetoptLong::NO_ARGUMENT])

def read_options(parser)
dt = 0.001
dt_dia = 1
dt_out = 1
dt_end = 10
eps = 0
init_out = false

14 CHAPTER 1. COMMAND LINE ARGUMENTS

x_flag = false
method = "rk4"

loop do
begin
opt, arg = parser.get
break if not opt

case opt
when "-d"
dt = arg.to_f

when "-e"
dt_dia = arg.to_f

when "-h"
print_help
exit # exit after providing help

when "-i"
init_out = true

when "-m"
method = arg

when "-o"
dt_out = arg.to_f

when "-s"
eps = arg.to_f

when "-t"
dt_end = arg.to_f

when "-x"
x_flag = true

end

rescue => err
print_help
exit # exit if option unknown

end

end

return eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag, method
end

eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag, method =
read_options(parser)

STDERR.print "eps = ", eps, "\n",
"dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",

1.5. AN OVERVIEW 15

"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"init_out = ", init_out, "\n",
"x_flag = ", x_flag, "\n",
"method = ", method, "\n"

include Math

nb = Nbody.new
nb.simple_read
nb.evolve(method, eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag)

1.5 An Overview

Alice: Can you show me roughly how it all works? No need to go into all the
details, right now, since we’ll probably want to change the functionality soon.
If you can just show me the flow of control, that would be fine.

Bob: Don’t worry, I’ll give you an overview, just enough information to start
your critical quest!

The first line of the file rkn1.rb reads:

require "rknbody.rb"

which means that it reads in the file rknbody.rb, which is just a straight copy
from the file rknbody9.rb, where we had just introduced softening as an extra
option. Remember, that file contained the Body and Nbody definitions. The file
rknbody.rb will be the beginning of our N-body library.

Alice: That is something I definitely approve of, to keep the best bits and piece
of our prototyping, and to use those to build up a library.

Bob: Until now, we have used a special driver file where we wrote down the
arguments that were given to the method evolve. In this case, these arguments
will be plucked from the command line, through the method read options, the
longest method in this file. But before we get there, it will be easiest to read
the file starting at the end.

The last three lines:

nb = Nbody.new
nb.simple_read
nb.evolve(method, eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag)

16 CHAPTER 1. COMMAND LINE ARGUMENTS

are exactly the same as the last three lines of the old driver file that we used to
invoke the softened version of our N-body code. Just above that, we report the
parameter values that are actually used in the run:

STDERR.print "eps = ", eps, "\n",
"dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"init_out = ", init_out, "\n",
"x_flag = ", x_flag, "\n",
"method = ", method, "\n"

These are also exactly the same as what was written in the old driver. However,
working our way back up, from here on things are different. Where we wrote
down the values of all parameters by hand in the old driver code, here there are
assigned by a call to read options with a single argument, called parser, as
follows:

eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag, method =
read_options(parser)

The method read options is written just above this call. At the top of that
method, all default values are assigned to the parameters that will become the
arguments for the call to evolve. Then the method enters a loop in which all
command line options are being read in. They are being parsed, as they say in
computer science, which just means that their meaning is being interpreted in
the correct way.

Alice: And I see that you have defined parser as a global variable. Somehow
this variable, which is an instance of a class called GetoptLong, knows how to
gather the information about all legal options in your code, both the one-letter
versions starting with a single ”-” sign, as well as the longer command line
arguments that start with ”--”.

Bob: Yes, this is a piece of magic that is provided by a package that I loaded
through the statement near the top:

require "getoptlong"

Alice: What does this package do, and roughly how does it work?

Bob: I must admit, I did not really look at it. I was browsing in a few Ruby
books, and I came across this example. It seemed really handy, so I copied it.
And the example was easy enough to change to my own requirements. The
important thing is: it works! And it has made my life already a lot easier.

1.6. A BEAUTIFUL VIOLATION 17

1.6 A Beautiful Violation

Alice: All of that I don’t doubt. And as I already mentioned, this is definitely
going in the right direction, but if you want my honest opinion . . .

Bob: . . . nothing less!

Alice: . . . then I must say: your writing style is a terrible violation of the
DRY principle. Or perhaps I should say: a beautiful example, since it violates
the Don’t Repeat Yourself so flagrantly!

Look, each option, from ”-h” all the way to ”-m”, occurs three times: in the
print help method at the top of the file, then immediately after that in the
parser.set options block, and then once again in the method following just
below, read options.

This means that you have created an ideal breading ground for bugs! How easy
it will be to add or change an option, and to forget to make the addition or
change in all three places. Or worse, to make different modifications in different
places. Just a single typo will be enough. And you’re likely to make typos
because it is such boring to repeat the work for changing the same option in
three different places.

Bob: Well, that may all be true, but aren’t you chasing after a form of Utopia?
There is a reason to do things three times. In the first occurrence, in print help,
we provide a help facility for the user. In the second occurrence, in parser, we
tell the parser what to expect on the command line, and to hand it to us. In
the third occurrence, in read options we interpret what the parser has just
handed us, and in doing so we prepare for the proper execution of evolve.

I admit that I am handling each option three times, but frankly, I doubt that we
have a choice. Look. This driver file rkn1.rb does three things: 1) it instructs
the parser to deliver information, in a precise way, so that it will get the correct
information; 2) it interprets the information and then passes it on to the evolve
method, again in a precise way, as needed by evolve; 3) it also is friendly enough
to share all that information with the user, through a help facility.

I simply don’t see how we can dispense with providing the central information
to these three players: the parser, the evolver, and the user. You have been
stressing modularity so often. As I understand modularity, this means that the
different modules don’t know from each other how they deal with the informa-
tion that they get. And this then means that someone has to play the role
of go-between. You talked about interface specifications. Well, here my driver
program forms a type of interface between parser, evolver, and user.

1.7 Arguments about Arguments

Alice: All of that is true. The parser should not and cannot know about the

18 CHAPTER 1. COMMAND LINE ARGUMENTS

way the options are going to be used by the evolve function, and neither of
those two should know about friendly user interfaces and how exactly such a
user interface implements a help facility.

Bob: So you agree that someone somewhere has to do a three-way translation
of the information?

Alice: Yes.

Bob: Good! And I think it is not fair to say that I violated the DRY principle. It
is true that I mentioned each option three times. But each time I did something
quite different with it. So I did not repeat anything, really. It would be like
receiving a dollar bill from someone, showing it to you to let you know what I
got, and then spending it somewhere in a store. Each of those three actions is
different and totally independent of the other two. So none of these actions can
be said to repeat any of the other ones.

Alice: No, at this point I disagree. You did repeat yourself, in the code.

Bob: Before disagreeing about the code, can you tell me what is wrong with
my simple analogy of the dollar bill?

Alice: That was not a good analogy. In fact, there you did not repeat yourself.
You mentioned the word ‘dollar bill’ only once! If your sentence would have
reflected your style of code writing, you might have said something like the
following: “tt would be like receiving a dollar bill from someone, showing the
dollar bill to you to let you know what I got, and then spending the dollar bill
somewhere in a store.” Notice how strange that would sound. In that case you
would have mentioned the words ‘dollar bill’ three times, in a way that sounds
odd, since people would expect to hear it only once.

In other words, I don’t object against using the information dealt with in the
command line options three times. You are right: we have no choice there. This
is a direct consequence from the fact that we are coding in a modular way, and
that information has to be passed from module to module. What I do object
against is the fact that you are explicitly using the same label three times. That
is where you are inviting mistakes to happen.

Bob: I still don’t see how I can pass the same information around if I don’t use
the same label. Your analogy is fishy.

Alice: It was your analogy.

Bob: Ah, but you twisted it around. In a natural language, like English, you
can replace the words ‘dollar bill’ by ‘it’, and somehow native speakers can figure
out what each ‘it’ refers to. But in a computer language that doesn’t work. A
computer language has to be precise. Even Ruby is hopefully unambiguous in
its meaning, unlike natural languages!

Alice: I don’t think we will convince each other on the level of analogies.
Why don’t we sit down and see whether we can adapt your first command line
argument parser, in such a way that we avoid repetition.

1.7. ARGUMENTS ABOUT ARGUMENTS 19

Bob: If you think that can be done, fine. I don’t think you can succeed, but I’m
willing to give it a try. I agree that these arguments about parsing command
line arguments can only be decided by hard-nosed coding examples.

20 CHAPTER 1. COMMAND LINE ARGUMENTS

Chapter 2

Encapsulating Information

2.1 A Soft Violation

Bob: Hi Alice, are you still convinced that you find a way to avoid repetition
in a command line option parser?

Alice: Hi Bob! I gave it a good deal of thought, and I came to the conclusion
that we were both right.

Bob: How can that be?

Alice: You were right in pointing out that the three places in your program did
three quite different things: parsing information, passing it on to the computer,
and optionally passing it to the user through a help facility.

At the same time, I was right in pointing out the danger of having the informa-
tion about that information scattered around in those three different places. I
called it a violation of the DRY principle, the notion of Don’t Repeat Yourself.
But I guess you did not commit a hard violation of the principle, since you did
not literally repeat yourself.

Perhaps you could call it a soft violation. The problem I objected to was the
fact that you mentioned the same option in three different places. And even
though you did something different concerning that option in each of those
different places, there still is the danger that if you change the functionality of
that option, you can introduce subtle bugs if you don’t update all three places
correctly.

Bob: Yes, I agree that there is that danger.

Alice: In fact, when I looked at your code, I realized that you actually deal
with each option four times! I only saw the first three, when I scanned the
actual mention of each option, but at the end you use the option information
once again.

21

22 CHAPTER 2. ENCAPSULATING INFORMATION

Bob: Can you show me?

2.2 Four Occurrences

Alice: Take the time step information, for example. First it appears in your
help description of the -d option:

def print_help
print "usage: ", $0,
" [-h (for help)] [-s softening_length] [-d step_size]\n",
" [-e diagnostics_interval] [-o output_interval]\n",
" [-t total_duration] [-i (start output at t = 0)]\n",
" [-x (extra debugging diagnostics)]\n",
" [-m integration_method]\n"

end

Then it occurs a second time as the first option listed in the call to the parser,
which have loaded through the getoptlong package:

require "getoptlong"

parser = GetoptLong.new
parser.set_options(
["-d", "--step_size", GetoptLong::REQUIRED_ARGUMENT],
["-e", "--diagnostics_interval", GetoptLong::REQUIRED_ARGUMENT],
["-h", "--help", GetoptLong::NO_ARGUMENT],
["-i", "--initial_output", GetoptLong::NO_ARGUMENT],
["-m", "--integration_method", GetoptLong::REQUIRED_ARGUMENT],
["-o", "--output_interval", GetoptLong::REQUIRED_ARGUMENT],
["-s", "--softening_length", GetoptLong::REQUIRED_ARGUMENT],
["-t", "--total_duration", GetoptLong::REQUIRED_ARGUMENT],
["-x", "--extra_diagnostics", GetoptLong::NO_ARGUMENT])

The third time, we encounter this same -d option in the inner loop of the
read options method, in the lines:

case opt
when "-d"
dt = arg.to_f

2.3. DANGER 23

What I had not realized yesterday was the fact that at the end, you echo all the
values that are set, before you start the integration. That is certainly a good
thing to do, since it allows the user to see explicitly what parameter values were
used by the integrator, including default values that were not set by the user.
But you see, again the time step shows up, this time not through a mention of
-d, but through the second line in the initial print statement:

STDERR.print "eps = ", eps, "\n",
"dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"init_out = ", init_out, "\n",
"x_flag = ", x_flag, "\n",
"method = ", method, "\n"

2.3 Danger

Bob: But why should that bother you?

Alice: imagine that you want to change the internal way to store the data.
Or more seriously, imagine that someone else wants to adapt your program
for additional applications, and therefore wants to change the internal way to
store the data. Instead of assigning the time step to the variable dt, perhaps
she wants to assign that value to a variable dynamics dt, since she also has a
stellar evolution module for which she is using a time step evolution dt.

Now she has to realize that she has to change the appropriate line in the inner
loop of the read options method, and in the second line of the STDERR.print
command. In those two places, dt occurs three times, and she has to realize
that she has to change two of the three as follows: in the read options place
she has to write:

dynamics_dt = arg.to_f

and in the STDERR.print command, she has to write:

"dt = ", dynamics_dt, "\n",

Do you see the potential for confusion, and hence mistakes.

Bob: Hmmm. I must admit that there is that possibility, yes.

24 CHAPTER 2. ENCAPSULATING INFORMATION

Alice: So this is what I meant when I said that we were both right. You are
doing four different things in four different places, so in that sense you are not
repeating anything. At the same time, you deal with the same variable in those
four different places, either through their command line option or their internal
representation.

Bob: You are saying that I do repeatedly something different with the same
piece of information.

Alice: Exactly.

Bob: And it would be better if we could avoid that.

Alice: Indeed.

Bob: But I come back to my question: how can we avoid that? It would be
terribly clumsy to do all four actions for the first option first, then to do those
for actions for the second option, and so on. In that way, you could keep the
information for one option all close together, but you would have to write a
copy of all four commands for each new option!

Alice: That would not be a good solution, I agree. We have to think of some-
thing better.

2.4 A Matter of Principle

Bob: You always like to come up with principles. Can’t you think of a principle
that will help us out here?

Alice: Now that you challenge me, perhaps we can use Ruby itself as an exam-
ple. Ruby is built on the principle of indirect addressing, which is why it is so
flexible. Perhaps we could avoid using the information itself in the four places
that I pointed out. How about storing the real information in a fifth place? If
we can find a way to access that fifth place in the other four instances where we
need the information, we can keep things under control.

Bob: Ah, you mean that the code writer has write access to the data in that
fifth place, while the other four places only have read access to those data?

Alice: I guess, yes, that is a good way to put it. I mentioned the case of someone
wanting to adapt the code for a different purpose. Rather than changing it in
the two different places I mentioned above, writing

dynamics_dt = arg.to_f

and

"dt = ", dynamics_dt, "\n",

2.5. AN OPTION BLOCK 25

all she would have to do is to go to the storage place where all the real infor-
mation is kept, and change one line there. If the information was kept there
as:

Internal variable: dt

then all she would have to do is change this line to:

Internal variable: dynamics_dt

Bob: I think I begin to see how this could be implemented. The two lines you
mentioned could be replaced by:

time_step_variable_name = arg.to_f

and

"dt = ", time_step_variable_name, "\n",

and somewhere an action would be taken that would replace time step variable name
everywhere with whatever the code writer would have specified in the Internal
variable: slot for the time step option. In the above case, time step variable name
would be replaced everywhere by dynamics dt.

Alice: Yes. This is the principle of indirect addressing, or the principle of
indirection, I guess.

Bob: That sounds like a lack of direction to me. But lets forget about naming
your principle – we could leave that open as well, and indirectly address your
principle later.

Alice: I see you still don’t like principles, but you must admit, this one gave us
a new idea.

2.5 An Option Block

Bob: I admit. So how to go about this? Ah, each option would have such a
definition, right? And each option would need more than the information of the
name of the internal variable. At a minimum, it would have to know about the
name of the external handle, namely the name of the option on the command
line argument; in our case -d or in longer form --step size.

Alice: I can see from the look in your eyes that you’re getting ready to code
something up!

26 CHAPTER 2. ENCAPSULATING INFORMATION

Bob: And each option would need a type, for the input to work properly. Even
though Ruby has dynamic typing, someone somewhere has to tell Ruby that the
number of particles, when read in from the command line, has to be converted
to an integer, while the name of the integration method retains the type of a
string, and the time step size becomes a floating point number.

Hmm. This becomes really interesting. So each option will be characterized by
a single block of information, which could be an instance of a new class. And it
could contain help information as well!

Alice: Ah, yes, of course. And if you would change either the functionality or
just the names of some of the information in a block, you would naturally modify
the help message as well, to reflect the changes you made. Since everything lives
together in one paragraph, so to speak, there is no obstacle against keeping
things up-to-date together.

Bob: We could even have more than one help level. For example, typing ”-
h” could lead to a one-line help message being displayed, while typing ”–help”
could give you a more detailed multi-line message.

Alice: So all the information would be bundled: the internal representation,
to be used by the computer when running a program, the specification of the
command line interface, to get the information from the user into the computer,
and help messages, to get information back to the user. I like it!

Bob: Not only that, there is another flow of information back to the user, when
a program starts running and echoes its initial state, as you pointed out earlier.
So each block could have a ‘print name’ for its internal variable as well. For
example, the number of particles could be specified on the command line by
typing -n 3 for an N-body system, or --number of particles 3 or something
like that. Internally the variable storing that information might be n part. But
when you echo the initial state, it is much more natural to just type N = 3.
This could be specified by a block with the lines

Short name: -n
Long name: --number_of_particles
Value type: int
Default value: 1
Global variable: n_part
Print name: N
Description: Number of particles
Long description:
Number of particles in the N-body system,
that is generated by this program. The
positions will be chosen at random within
a sphere of unit radius, and the velocities
will be set to zero.

The Description content can then be displayed after a -h request, and the

2.6. GROWING A MANUAL 27

Long description content appears when you give a --help request. I started
the latter on a new line, since it will be the only piece of information that will
need to be spread out over more than one line, and starting it at the beginning
of the line will allow us to format it properly for display.

2.6 Growing a Manual

Alice: Very nice! In fact, when you have several options, and you give each
option such a detailed Long description, those together in effect form a kind
of man page, like in the Unix system, a form of manual page that summarizes
the interface to the program. And keeping all that information within the code
itself will be a form of insurance.

We all know of cases where the manual page for a code says one thing, while
the code does something else, because someone modified the code and did not
bother to update the man page. Now if the manual information lives in the
very same place where the actual information about the main variables is kept,
there is no longer any barrier against keeping information up to date.

Bob: Even I can bring up the discipline to keep documentation up to date
in that way, I expect. And now that you mention man pages, a natural thing
would be to add examples in the Long description. How about:

Long description:
Number of particles in the N-body system,
that is generated by this program. The
positions will be chosen at random within
a sphere of unit radius, and the velocities
will be set to zero.

Example: "ruby mk_cold_collapse -n 100"

will generate a cold system containing 100
particles.

Alice: So you allow blank lines in the output. Well, why not. If we consider
each help message to form a part of a manual, it would only be natural to allow
new paragraphs and blank lines to appear. It certainly will make things more
readable. We just have to be careful to find a unique way to get the information
listed so as not to confuse two options.

Bob: Easy! We can insist on two blank lines between options. If we insist that
the Long description allows appears at the very end of a block, then a single
blank line means that the Long description still continues, whereas a double
blank line means that we now start the next block, for a new option.

28 CHAPTER 2. ENCAPSULATING INFORMATION

Alice: I think you have found a great way to make a top-down specification for
a user interface for all of our programs! Before we write a program to parse all
that information, how about going all the way, top-down wise? We may as well
specify the whole series of option blocks for our N-body program. Once we are
happy with that, we can implement a parser, and then use all that to replace
your previous driver rkn1.rb.

Bob: Good! In that way, it will be easier to write the parser, with a concrete
example in front of us. I can just take the options from rkn1.rb, fill in the
blanks for the variables, and weave the appropriate help texts into each block.

Alice: Go right ahead!

2.7 An Full Option List

Bob: Okay. This is the type of code that writes itself, once you get the idea!

Alice: As long as you write it, I can maintain your illusion that the program
writes itself.

Bob: What about this, for our N-body program? You see: I am adding a top-
level not-an-option option, which only contains two entries, Description and
Long description to tell us what the whole code is doing, before getting into
the detailed information of each option. This could be the opening paragraph
of the manual page.

And come to think of it, let me put everything in one long ‘here document’.
That will make it easy to pass this option block list around, as a single string.

options_definition_string = <<-END

Description: The simplest ACS N-body code
Long description:
This is the simplest N-body code provided in the ACS environment
(ACS: Art of Computational Science; cf. "http://www.ArtCompSci.org").
It offers a choice of integrators, for constant shared time steps.

Short name: -m
Long name: --integration_method
Value type: string
Default value: rk4
Global variable: method
Print name: # blank: suppresses glob. var. name
Description: Integration method
Long description:
There are a variety of integration methods available, including:

2.7. AN FULL OPTION LIST 29

Forward Euler: forward
Leapfrog: leapfrog
2nd-order Runge Kutta: rk2
4th-order Runge Kutta: rk4

Short name: -d
Long name: --step_size
Value type: float
Default value: 0.001
Global variable: dt
Description: Integration time step
Long description:
In this code, the integration time step is held constant,
and shared among all particles in the N-body system.

Short name: -e
Long name: --diagnostics_interval
Value type: float
Default value: 1
Global variable: dt_dia
Description: Diagnostics output interval
Long description:
The time interval between successive diagnostics output.
The diagnostics include the kinetic and potential energy,
and the absolute and relative drift of total energy, since
the beginning of the integration.

These diagnostics appear on the standard error stream.
For more diagnostics, try option "-x" or "--extra_diagnostics".

Short name: -o
Long name: --output_interval
Value type: float
Default value: 1
Global variable: dt_out
Description: Snapshot output interval
Long description:
The time interval between output of a complete snapshot
A snapshot of an N-body system contains the values of the
mass, position, and velocity for each of the N particles.

This information appears on the standard output stream,
currently in the following simple format (only numbers):

30 CHAPTER 2. ENCAPSULATING INFORMATION

N: number of particles
time: time
mass: mass of particle
position: x y z : vector components of position of particle
velocity: vx vy vz : vector components of velocity of particle
mass: mass of particle
...: ...

Example:

2
0
0.5
7.3406783488452532e-02 2.1167291484119417e+00 -1.4097856092768946e+00
3.1815484836541341e-02 2.7360312082526089e-01 2.4960049959942499e-02
0.5

-7.3406783488452421e-02 -2.1167291484119413e+00 1.4097856092768946e+00
-3.1815484836541369e-02 -2.7360312082526095e-01 -2.4960049959942499e-02

Short name: -t
Long name: --total_duration
Value type: float
Default value: 10
Global variable: dt_end
Description: Duration of the integration
Long description:
This option allows specification of the time interval, after which
integration will be halted.

Short name: -s
Long name: --softening_length
Value type: float
Default value: 0
Global variable: eps
Description: Softening length
Long description:
This option sets the softening length used to calculate the force
between two particles. The calculation scheme comforms to standard
Plummer softening, where rs2=r**2+eps**2 is used in place of r**2.

Short name: -i
Long name: --init_out

2.7. AN FULL OPTION LIST 31

Value type: bool
Global variable: init_out
Description: Output the initial snapshot
Long description:
If this flag is set to true, the initial snapshot will be output
on the standard output channel, before integration is started.

Short name: -x
Long name: --extra_diagnostics
Value type: bool
Global variable: x_flag
Description: Extra diagnostics
Long description:
The following extra diagnostics will be printed:

acceleration (for all integrators)
jerk (for the Hermite integrator)

END

Alice: Wonderful! That contains all the information needed for a computer as
well as for a human reader. How nice! You can just go through it and already
get a good feeling for what the code is doing, without reading any line of code
yet.

Just one question: why is there a minus sign before the END in the beginning of
the specification of the ‘here document’?

Bob: Oh, hyphen means that we can put the END anywhere on a line, not
necessarily flush with the left margin. In other words, it does not have to
start in the first column, in the old language of punch cards, but it can appear
indented and still be recognized as the proper END. And as you can see, I indeed
ended the ‘here document’ with a few spaces in front of the ending END, since
it looked more natural in that way.

Alice: Now all we have to do is implement it, by writing a parser.

Bob: I’m happy to give that a try. Now that we have specified the procedure,
it shouldn’t be too hard to write the code to make it all come alive. Given the
flexibility of Ruby, and a healthy dose of regular expression magic, this should
be doable. And I’m sure glad we don’t have to code this up in C++ or Fortran!

Alice: Indeed, this is the ideal task for a scripting language. Even the name
fits: we have just produced a script for specifying an N-body dance.

Bob: Okay, let me give it a shot. Next time we meet I should have at least
something workable.

32 CHAPTER 2. ENCAPSULATING INFORMATION

Chapter 3

Implementation: Clop Entry
Points

3.1 A New Driver

Alice: Hi Bob! How’s it going with your attempt to implement the option block
idea?

Bob: Well, it took me quite a bit longer than I thought, but that was mainly
because I got more and more ideas for further improvements, while I was writing
the parser. And now I’m really hooked to the use of a scripting language! It was
wonderful to see how easy it was to add functionality, and to change prototype
behavior on the fly, just to try out various options.

Alice: Ah, I can see that your parsing code grew as a result.

Bob: Yes, but not as much as I would have expected. Compared to my much
simpler parser, the length grew by only a factor four, and even that is not a fair
comparison at all, since I used a piece of canned magic before, by adding

require "getoptlong"

Who knows how long that code is. In contrast, this time I wrote everything
myself, and the functionality is vastly increased.

Alice: Can you walk me through the code, to show me the new magic?

Bob: I’m glad to do so! Let me just follow the flow of control, right from the
beginning.

In my new driver, rkn2.rb, I now start as follows:

33

34 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

require "rknbody.rb"
require "clop.rb"

You see, I’m including the Body and Nbody classes, as before, in the first line,
and I’m including the new parser that I wrote, which lives in clop.rb. You will
appreciate the modularity: In clop.rb there is no knowledge about N-body
systems; in fact, a chemist or a biologist could use clop.rb equally well for
completely different purposes.

Alice: Hear, hear!

Bob: I thought you would like that. Now following those two lines, there
appears this one long ‘here document’ that we already wrote before, containing
the full list of option blocks. Then, the only thing left in this file rkn2.rb, are
the following lines:

parse_command_line(options_definition_string)

include Math

nb = Nbody.new
nb.simple_read
nb.evolve($method, $eps, $dt, $dt_dia, $dt_out, $dt_end, $init_out, $x_flag)

So that is all there is to it! This is the whole driver. It contains a two lines at
the start to specify what needs to be included, a few lines at the end, the rest
is one long list of option blocks in a single ‘here document’. And all the work is
done in the file clop.rb that contains the parser.

3.2 Invoking the Parser

Alice: So the last three lines are almost the same as the last three lines in your
first attempt at parsing the command line, in file rkn1.rb:

nb = Nbody.new
nb.simple_read
nb.evolve(method, eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag)

The only difference is that all the parameters of the call to evolve are now
global variables, if I remember Ruby’s convention correctly.

Bob: Yes, in Ruby, a variable starting with a dollar sign is by definition a global
variable. Normally I would not like to use global variables, but here it seemed

3.3. THE CLOP CLASS 35

like a natural way to get the information from the parse file clop.rb back into
our driver. The alternative would have been to turn each variable into a method
that interrogates the class Clop that is hiding inside clop.rb. Instead of using
the global variable $dt, we could define an instance my clop.dt, and so on.

You might argue that these variables are what the user is providing for a par-
ticular run, and while the run is running, these variables contain the only infor-
mation to the program available from the outside world; all other information
is local to the program. So to use global variables may even be natural.

Alice: I agree that this is one of the few places where global variables seem like
a reasonable solution. Although I don’t like them in general, I also don’t like to
stick to literally to any principle, even the principle ‘thou shalt not use global
variables’.

Bob: Another meta principle, not to stick to any principle?

Alice: Watch out, if you apply that to itself, you may get into a paradox!

Bob: Like the question “who shaves the barber?” if the barber shaves everyone
who doesn’t shave himself. But let’s not get into that.

Alice: Now all the magic occurs because of the one call

parse_command_line(options_definition_string)

I see that you take the one humongous ‘here document’ string, and feed it into
this method, that must be defined inside the file clop.rb.

Bob: Indeed! Time to open that file, and to show you what is going on. Instead
of going through it from beginning to end, let me walk through the file, following
the flow of the logic, starting with the method that is called here.

Alice: I’m all ears and eyes!

3.3 The Clop Class

Bob: The file clop.rb contains three things: there is the definition of a class
called Clop, in front of that there is the definition of a helper calls Clop Option,
and after that there is a very short piece, namely the following three line defi-
nition:

def parse_command_line(def_str)
Clop.new(def_str, ARGV)

end

Alice: That’s all that happens, in order to parse the command line? This
method just creates a new instances of the class Clop, and that’s it?

36 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

Bob: That’s it. Note that two essential pieces of information are passed to
that new instance. The first argument contains the string with the whole list
of option blocks, that was defined in the driver. That was the one and only
argument passed from the driver to the clop.rb file. The second argument is
ARGV, the array that contains the command line, broken up in space separated
pieces.

Alice: So that is very similar to C.

Bob: Yes, except that ARGV[0] is already the first argument to the program,
not the program name, as a C programmer might expect. So if you give a
command:

ruby test.rb -x -o out_file

then ARGV[0] = "-x", ARGV[1] = "-o", and ARGV[2] = "out file". Effec-
tively what has happened is that the piece of the command line that follows the
program name is treated as a string, on which the command split is run. In the
above case, when we call the remainder of the command line, after test.rb, str,
then ARGV is the same as the array a that we would obtain from the statement:

a = str.split

The split command splits the one string str into an array of smaller strings,
where blank spaces function as separators defining the extent of each smaller
string.

Alice: So the logic here is that you create a new instance of the class Clop,
and you give it all the information that it needs: the ‘here document’ that
contains the complete interface information of our N-body code, and the ARGV
array that contains the full information of what the user wrote on the command
line. And somehow everything else happens as a side effect of creating this new
Clop instance.

Bob: Yes. I did it that way so that you don’t have to bother anymore later on
about Clop classes. You just create one, and then you can already discard it,
since upon creation it has done all its work. Let me show how.

Alice: By the way, why the name Clop ?

Bob: Ah, I should have mentioned that. Clop stands for Command Line Option
Parser.

Alice: I should have guessed.

Bob: A class name Command Line Option Parser just sounded a bit too long
for my taste. On the other hand, feel free to change the name that way, if
you like. In true object-oriented and modular way, the name of the class is not
visible to the user. Instead, the user just gives the command

3.4. CREATING A CLOP INSTANCE 37

parse_command_line(options_definition_string)

Still, as you know, I prefer more terse names, hence Clop.

3.4 Creating a Clop Instance

Alice: So what happens when you create a new Clop instance?

Bob: Here is the initializer for the Clop class:

def initialize(def_str, argv_array = nil)
parse_option_definitions(def_str)
if argv_array
parse_command_line_options(argv_array)

end
print_values

end

Alice: It indeed seems to do all the work required: first it parses all the defi-
nitions from the option block list from the N-body driver, then it parses all the
options given on the command line.

Bob: And finally it echoes all the values that it gives back to the driver. Some
of the values will be specified by the user. Other values, not specified by the
user, will retain their default value. By echoing the whole set, the user will
know exactly how the N-body integration got started, with what set of initial
parameters.

Alice: But where does this method give those values back to the driver?

Bob: Ah, global variables, remember? Nothing is passed back explicitly. It is
just made visibly globally. That’s why the driver could simply give the com-
mand:

nb.evolve($method, $eps, $dt, $dt_dia, $dt_out, $dt_end, $init_out, $x_flag)

Alice: Ah, yes, of course. One more advantage of global variables. Once you
have decided to go that dangerous path, you might as well enjoy it.

Okay, the logic is still crystal clear, so far. Let us start with the first command.
How do you parse the option definitions?

3.5 Parsing Option Definitions: the Idea

Bob: Before showing you the method, let me first explain the idea. The full list
with all the option blocks is contained in the single string def str. What we

38 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

would like to do is to cut up this list in two steps. The first logical step would
be to divide the full string into shorter strings, one for each option. The second
logical step would be to split each option string into lines, so that you can parse
the meaning of each line.

Now a more practical approach would be to reverse the order. It is much easier
to split the original def str string immediately into individual lines. You can
do that with the split method we just talked about: by default it cuts up a
string wherever a blank space appears, but if you give it an argument, such as
a newline \n, it will cut the string wherever in encounters the symbol specified
in the argument.

In other words, the command

a = def_str.split("\n")

will produce an array of single lines, that together make up the original list of
option blocks.

So now we have to go back to the step we skipped: we have to stitch the lines
together that belong to a single option. To do this, we hand the whole array of
lines to another method, which is so friendly as to take off enough lines from the
array as are needed to reconstruct a single option block. That friendly method
then passes back that single option, as a nice package, while leaving all the
unrelated lines on the array of lines. After each call to this method, the line of
arrays shrinks, until the whole array has been eaten up, and we are left with a
stack of package, one for each option.

Now what I call a package is – you guessed it – an instance of a new class,
called Clop Option. It is a helper class, used by the Clop class, to wrap up all
the information for a single option. The Clop class itself contains an array of
instances of Clop Option.

Alice: Just like an N-body system is represented by an instance of the class
Nbody, which contains an array of instances of the Body class, one instance for
each particle.

3.6 Parsing Option Definitions: the Method

Bob: Exactly. And here is the method that parses the option definitions.

def parse_option_definitions(def_str)
a = def_str.split("\n")
@options=[]
while a[0]

3.6. PARSING OPTION DEFINITIONS: THE METHOD 39

if a[0] =~ /^\s*$/
a.shift

else
@options.push(Clop_Option.new(a))

end
end

end

What I just described as the friendly method that wraps related lines into a
single package is nothing else but . . . the initializer for the Clop Option class!
I use the same approach that we started with, one level lower. On the top level
all the parsing work, for all options, was done as a side effect of creating a single
Clop instance. On this level here, the parsing work for a single option is done
as a side effect of creating an instance of the Clop Option class.

Alice: All very clear. So you create an empty array of options, called @options,
an instance variable within the Clop class. As long as there is anything left on
the array of single lines, you traverse the while loop. Only when a[0] = nil, in
other words when the array of lines has been picked empty of lines, and nothing
is left anymore, do you end your work.

Now within the while loop, whenever you encounter a line that is completely
blank, you discard it. That is what the lines

if a[0] =~ /^\s*$/
a.shift

mean, right?

Bob: Right. The regular expression indicates lines that contain zero or more
blanks, between begin and end of a line. The symbol \s stands for any type of
white space, such as a single space or a tab. The symbol ˆ at the beginning of
a regular expression /ˆ.../ means the beginning of a line, while the symbol $
means the end of a line. The symbol * as usual means zero or more instances of
the previous symbol, so \s* means any number of spaces or tabs, possibly zero.

Taken together, the regular expression /ˆ\s*$/ corresponds to any line that
looks blank to the eye, whether it is a null string "" or a string with a few
blanks like " " or a string containing tabs as well, like " \t \t\t ". Now
whenever such a line is encountered, the array method shift is called in the
second line above, which simply discards the first element of the array. As a
result, the new element a[0] now contains what used to be stored in a[1],
a[1] contains what used to be in a[2], and so on. The array consequently has
become one element less in length.

Alice: And as soon as a non-blank line is encountered, you create a new instance
of Clop.Option.

40 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

Bob: Yes, and I give the line array a as an argument to the of Clop.Option.
This is the friendly function that gobbles up as many lines as needed to complete
a well wrapped single option.

Alice: Ah, this means that it stops when it encounters two blank lines.

Bob: Yes, since we had agreed that that would be the sign that would separate
two different option blocks. But the Clop.Option initializer is even friendlier
than that: it also stops when there is something wrong with the syntax of the
option that it is trying to wrap up. It doesn’t just wrap any random bunch of
double-blank-line-separated stuff.

So we can be assured that when Clop Option.new returns, we have a valid new
option package, in the form of a new instance of the Clop.Option class, and we
can safely add that to the array of options called @options, using the command

@options.push(Clop_Option.new(a))

Alice: Okay, I get it! In a moment, I would like to see how Clop.Option does
its work, but for now, let us assume it knows what it is doing, and let us look
at the second action that the initializer for Clop itself is performing.

3.7 Parsing Command Line Options: the Idea

Bob: Again, let me lay out the logic first. After the definitions of all options
have been read in and parsed, it is time to see which options the user has
actually specified, and to take the corresponding actions, such as modifying the
default values of the appropriate global variables, or providing help of one type
or another, as the case may be.

So there are two steps to the process of parsing the command line options: first
make an inventory of options specified, and then take the appropriate actions.
If a help request is encountered in the first step, the second step consists of
printing out the corresponding help message(s). If no help is requested, the
second step consists of initializing the proper global variables.

The first step is carried out in a loop. At the beginning of the loop, the first
element of the ARGV array is examined. Depending on the option found, the
correct action is taken. For example, if an option is found that does not require
a value, this option is assumed to be a boolean variable, in other words a flag.
Such a flag is by default set to be false, but when the option is encountered,
the value of the flag is set to be true. If an option does require a value, another
element is taken from the ARGV array, and properly interpreted.

This last element can be a bit complex, since some values may be spread over
several elements of the ARGV array. For example, if a vector is specified, through
-v [1, 2, 3], several elements from the array have to be parsed until the
closing] symbol is encountered.

3.8. PARSING COMMAND LINE OPTIONS: THE METHOD 41

Alice: But you could have required the reader to put the whole vector into a
string, as follows: -v "[1, 2, 3]".

Bob: Yes, and that is also a legal option. However, I wanted to make the parser
really general, and I also wanted to free the reader from thinking about such
aspects as how the command line would be parsed. In the spirit of Ruby, I prefer
to download as much of the complexity of the interface to the code behind the
interface, keeping the interface itself as natural as can be. Rather than training
the user to add those double quotes, I would rather train the computer to figure
out what to do even without quotes.

Alice: And as long as you insist that every vector starts with an opening square
bracket and ends with a closed square bracket, there is no ambiguity.

Bob: Exactly. Ambiguity would be impossible to correct, of course. But as
long as everything is unambiguous, I prefer the parser to do the hard work.

Now all of what I have just mentioned is still part of step one. Step two is more
straightforward: You just ask each option to initialize its own global variable.
And here you don’t care whether such an option still has its default value, or
whether that value has been modified through a command line option that was
just read in.

Alice: Okay, got it! Let me see how you coded this.

3.8 Parsing Command Line Options: the Method

Bob: Here is the actual method:

def parse_command_line_options(argv_array)
while s = argv_array.shift
if s == "-h"
parse_help(argv_array, false)
exit

elsif s == "--help"
parse_help(argv_array, true)
exit

elsif i = find_option(s)
parse_option(i, s, argv_array)

else
raise "\n option \"#{s}\" not recognized; try \"-h\" or \"--help\"\n"

end
end
initialize_global_variables

end

42 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

As long as there is something left in the array that contains all the command
line bits and pieces, you take the next piece, call it s, and inspect that string.
Now there are four possibilities. It could be a request for short help, in the form
of a -h string; or it could be a request for long help, in the form of a --help
string; or it could be the beginning of a regular option; or none of these three.
In the last case, an error is reported, and the program is halted. The command
raise prints the string that follows it, and stops execution of the code.

Alice: The call to find option takes only one argument, while parse option
takes three arguments. Why is that?

Bob: The string s should contain one or two hyphens, followed by the name of
the option, and that unique name is enough to determine which option we are
dealing with. Therefore find option takes only one argument, namely s, and
returns the number of the option, i, which is simply the index of the option in
the array of options. Remember that Clop has an instance variable @options
for the option array, and the number i just means that we are dealing with
option @options[i].

However, knowing which option we have just encountered is not enough to com-
pletely parse the information for that option. In general, the next element in the
ARGV array will contain the new value for that option. And as I just mentioned,
in the case of a vector value, that value may be distributed over an unknown
number of further ARGV array elements. Therefore the call to parse option
needs to receive both i and argv array.

Alice: Yes, but why do you give it s as well? Haven’t you squeezed all the
information out of it by finding out which option it refers to? If s = "-d" or s
= "--step size", there is no need to pass that string s on to parse option.

Bob: Ah, you are completely right in those both cases. But there are other
cases!

Alice: I can see that you are proud of having find a clever solution for something.
But for what? There are only two cases for any option; either it is a one-letter
option, starting with a single hyphen; or it is a multi-letter option, starting with
a two hyphens

Bob: Right.

Alice: Right? So, then why pass it on?

Bob: Imagine that a user wants to set up a three-body system, and tries to
give that option as -n3 . . .

Alice: . . . instead of the more proper -n 3. I see. Yes, that makes sense. I
like that! It is another example where you could have trained the user to always
leave a blank space between an option and a value, but why do that? Better
let the computer figure it out. And in that case, of course parse option needs
to have access to the string s, just in case not all the information has been
squeezed out of it. It may still contain the value of the option.

3.9. PRINTING VALUES 43

Bob: Right! Of course, this only applies to one-letter options. In this case, too,
we cannot allow ambiguity. An option specification like -n3 is unambiguous,
but writing --number of particles3 would be confusion. It could refer to a
boolean flag with a name number of particles3. An unlikely name in this
case, but there are other option names that could naturally take a number,
such as --high5 or --loveU2, which may or may not be defined as boolean. So
I only allow leaving out a space in the case of one-letter options.

Alice: And finally you initialize all global variables through a call to initialize global variables.
No arguments needed, since the variables are global, and we deal with all of
them. I like the long names you have chosen for your methods. That really
helps in following the flow of the logic!

3.9 Printing Values

Bob: Thanks! Now let us go back to the initializer for the Clop class, where
all the action started. Let me show it again:

def initialize(def_str, argv_array = nil)
parse_option_definitions(def_str)
if argv_array
parse_command_line_options(argv_array)

end
print_values

end

We have now seen, in outline, how the options definitions are parsed, until the
definition string def str has been eaten up, and how the command line options
are parsed, until the array containing command line fragments, argv array, has
been digested. All that is left to do at that point is to print the values and, you
guessed it, that is done with the method print values:

def print_values
@options.each{|x| STDERR.print x.to_s}

end

You see, this is a very simple method: it just gives an order to each option to
print its own value. Remember, we want the output of each program to start
with a list of values used, to remind the user what the initial state is that the
program starts out with.

Alice: And the actual work is done through print value, which must be a
method associated with the Clop option class.

44 CHAPTER 3. IMPLEMENTATION: CLOP ENTRY POINTS

Bob: Exactly. It is time that we look at that class as well. Here we have
reached the end of the top level tour.

Alice: Thank you! Now I see clearly how you have laid out the program.
Indeed: time to open some of the black boxes that you have mentioned so far.

Bob: Yes, these boxes were left in the dark so far. Now let there be light!

Chapter 4

The First Journey: Clop,
the Non-help Part

4.1 Three Journeys

Alice: I have enjoyed getting a bird’s eye view of your clop.rb file. Let’s get
a little closer to the ground now. Where shall we swoop down?

Bob: I suggest that we continue our tour on the level of the Clop class, before
descending all the way to the internal workings of the individual options, the
machinery of which is contained in the Clop option class.

However, more than halve of the Clop class code lines are dedicated to the
help facility. It is not necessary to look at these lines in order to understand
how normal options are being parsed. So I suggest that we continue our tour
in three easy journeys. First we inspect how a normal option is handled on
the Clop level. Second, we descend to the Clop option level, to see how the
corresponding option block is parsed and used. Third, we go back to the Clop
level in order to figure out how the help facilities works.

Alice: Sounds good to me!

Bob: The first journey is by far the simplest, and shortest. Of the three actions
ordered in the Clop initializer:

def initialize(def_str, argv_array = nil)
parse_option_definitions(def_str)
if argv_array
parse_command_line_options(argv_array)

end
print_values

end

45

46 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

we have already seen how the first action parse option definitions consisted
in handing all the work to the initializer one level lower, through a call to
Clop Option.new. So that part will be visited in our second journey.

Similarly, we have seen that the request for the third action also was handed
down directly to the individual options on the Clop Option level. All we have to
do in our first journey is to figure out how the method parse command line options
works.

4.2 Inspecting find option

Alice: Can you show me this method again?

Bob: Here it is:

def parse_command_line_options(argv_array)
while s = argv_array.shift
if s == "-h"
parse_help(argv_array, false)
exit

elsif s == "--help"
parse_help(argv_array, true)
exit

elsif i = find_option(s)
parse_option(i, s, argv_array)

else
raise "\n option \"#{s}\" not recognized; try \"-h\" or \"--help\"\n"

end
end
initialize_global_variables

end

The first two if and elsif branches concern the help facility, which we will
address in our third journey. So we only have to inspect the following three
methods here, during our first journey: find option and parse option and
initialize global variables.

Here is the first one:

def find_option(s)
i = nil
@options.each_index do |x|
i = x if s == @options[x].longname

4.2. INSPECTING FIND OPTION 47

if @options[x].shortname
i = x if s =~ Regexp.new(@options[x].shortname) and $‘ == ""

end
end
return i

end

Alice: The top part is clear. You hand it a string that contains something like
"-d" or "--step size". I presume that the option class Clop option has a
method longname that returns exactly the string "--step size" and a method
shortname that similarly returns "-d".

Bob: Well presumed!

Alice: Now if the option is recognized as the long name version of option i in
the option array, the value i is returned, as it should be. But what happens
with the short name?

Ah, wait, before you answer my question, let me think. This must be connected
with the fact that you allow for short options to be glued to their values. For
example "-d0.001" would be a valid format.

Bob: Indeed, even though a user would not be likely to write it that way,
since it does look a bit confusing. However, if we allow "-n3", we should allow
"-d0.001" as well.

Alice: Agreed. So I understand that you want to check only whether the -d
part is present in the string s, while that string is allowed to contain more. Now
you do that by turning the shortname of the option into a regular expression.

Bob: Yes: if you want to compare two strings, the proper and clean way to do so
in Ruby is to change the string at the right-hand side into a regular expression.
This is like converting a integer into a floating point number. In a way, nothing
changes, except that now it has become an instance of a different class. For the
number, an Int instance has become a Float instance, and here in our case, a
String instance has become a Regexp instance.

Alice: and the comparison operator =∼ returns true if @options[x].shortname
is indeed contained in the string s.

Bob: Yes, except that it returns the position of the first character of the match,
rather than true. But what concerns us here is that it does not return nil,
which would be interpreted sa false; anything that is not nil or false is
considered to be true. Even the null string "" is true in Ruby, another thing
to watch out for if you are a C programmer.

Alice: And a more logical use of the notion of true, if you ask me. A non-null
string string is still more than nothing.

Bob: Yes, I agree, though it took me a while to shake the C habit.

48 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

4.3 The Last Cryptic Bit

Alice: Now I think I understand all about this find option method, except
for that last cryptic bit, and $‘ == "". What is that doing there? And what
does it do?

Bob: Ah, that is a nice addition, if I may say so myself. At first I had not
put that in, but when I looked at this method, without that addition, I had the
feeling that something wasn’t right. When I thought about it, I realized that
there was still a possibility for ambiguity.

Alice: Like?

Bob: Like having an option with a long form --number of particles and a
short form -n. Can you see what would happen in that case?

Alice: Let me inspect. Ah! Yes, of course. In the case of the long form, you
still match correctly against -n, as the second and third character of the long
form. How devious!

But wait a minute. If you first check the long form, you could bypass the
check for the short form, by turning the two if statements into an if...else
statement.

Bob: Yes, that would work in the specific case I just mentioned, where there is
only a confusion between the two ways of writing the same option. But what if
there is a possible confusion between two different options?

Here is an example. Let there be another option with a long form called
--neutron star type. Now that option, too, matches -n. So we have to pro-
tect different options from each other, and we cannot assume safety just by
shadowing the short option check by the long option check.

Alice: You are right! But I still don’t understand the syntax of your solution. I
would have checked whether the match started at the beginning. Didn’t you say
that the match attempt returns the position of the first character of a successful
match?

Bob: Indeed. And you are right. I could have written

i = x if (s =~ Regexp.new(@options[x].shortname)) == 0

However, I preferred to use the $‘ variable. After every successful match, the
matched part of the string is assigned to the variable $&, while the part of the
string before the match is assigned to $‘ and the part of the string following
the match to $’. So I just checked whether $‘ was equal to the empty string:

i = x if s =~ Regexp.new(@options[x].shortname) and $‘ == ""

Alice: I see. That is good to know. I guess those rather cryptic shorthands are
borrowed from Perl.

4.4. INSPECTING PARSE OPTION 49

Bob: I think so.

Alice: Okay, I now fully understand how find option. On to the next station
of our first journey!

4.4 Inspecting parse option

Bob: Here is the next station. After we know which option we are dealing with,
we have to parse it. This happens in the following method:

def parse_option(i, s, argv_array)
if @options[i].type == "bool"
@options[i].valuestring = "true"
return

end
if s =~ /^-[^-]/ and (value = $’) =~ /\w/
@options[i].valuestring = value

else
unless @options[i].valuestring = argv_array.shift
raise "\n option \"#{s}\" requires a value, but no value given;\n" +

" option description: #{@options[i].description}\n"
end

end
if @options[i].type =~ /^float\s*vector$/
while (@options[i].valuestring !~ /\]/)
@options[i].valuestring += " " + argv_array.shift

end
end

end

Now this is a bit more complicated, since there are several forks in the road.
The first fork is related to the question: is the type of the option boolean? In
other words: are we dealing with a flag? A flag can only be true or false. By
name the flag as a command line option, the user intends to set the flag, i.e., to
the value true. By leaving out that option, the user intends to keep the default
value false.

For example, in our N-body code, the user can ask for extra diagnostics by in-
cluding the option -x, which leads to the corresponding global variable $x flag
as we have specified already. By default $x flag = false. If the option -x is
encountered, we have to change this variable to $x flag = true.

This happens by setting the valuestring of the boolean option to true as you
can see at the beginning of the code fragment above.

50 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

Alice: This valuestring is probably implemented as a string @valuestring
within the Clop option class, and there that string is used later to obtain the
actual value?

Bob: All correct, as we will see during our second journey, but you don’t have
to rely on that, on this level: it could have been implemented in a different way,
as far as the Clop class is concerned. The only important thing is that there
is a ‘setter’ method provided for the Clop option class, that somehow sets the
internal information of the Clop option instance in such a way as to guarantee
that the boolean value of the option, when asked for later, will return true.

Hmm, that sounded more complicated than it really is. Often things are much
clearer on the code level than when you try to express it in words.

Alice: The same is true in mathematical equations, of course, once you under-
stand all the symbols . . .

Bob: . . . and once you are sufficiently familiar with manipulating the symbols
that they are becoming old friends.

Alice: Yes, until that point it is still helpful to have clumsy sentences in a
natural language to help you get the idea. So, please continue to be clumsy,
and tell me what happens next. We have encountered a fork in the road. It the
option is boolean, we set it to true without needing to read anything more from
the command line, and we happily return.

Bob: And if the option is not boolean, we take the other fork in the road, by
continuing the travel through the method parse option.

4.5 Extracting the Value: Normal Case

Alice: Ah, I see, if the type of the option is not boolean, you have to extract
the value from the next little bit of command line information, by accessing
arg array. But wait a minute, I see two lines where you assign something to
@options[i].valuestring, no, three lines; one at the very bottom too.

Ah, that last one deals with vectors, and you already explained that vectors
are special, in that their value can be spread out over different bits of string
in the command line. So let’s leave that for later. But what about these two
assignments of @options[i].valuestring right in the middle?

Bob: The main assignment, the one you should look at first, is this one:

unless @options[i].valuestring = argv_array.shift
raise "\n option \"#{s}\" requires a value, but no value given;\n" +

" option description: #{@options[i].description}\n"

In most cases, after encountering a new option name, you just read in the
value corresponding to that option, as the next little string that came from the

4.6. EXTRACTING THE VALUE: COMPACT CASE 51

command line. If there is nothing left to be parsed on the command line, that
just means that the user has forgotten to provide a value: an error message is
printed, and execution of the code is halted.

Alice: But what happens if the user provides a next option, instead of the value
for the previous option? Imagine that the user writes -n -x.

Bob: In that case, an attempt will be made to set the number of particles to -x,
which will result in something silly. But hey, we can’t protect the user from all
possible errors! I don’t know how to anticipate on this level what is and is not
correct. Others, using this code in the future, will undoubtedly use it for more
general purposes than I can currently envision, so I don’t want to constrain too
much what can and cannot be said.

Alice: Hmmm. You could at least insist that a valid number would be provided
when the type of a variable is given as an int or float.

Bob: Perhaps. We could come back to those questions later, and try to make
everything industrial-strength. For the time being, I’m happy if everything
works under reasonably normal circumstances with reasonably intelligent users.

Alice: Well, if you talk about users that don’t make errors, then I have to
conclude that nobody fits the criterion of being ‘reasonably intelligent’. But
okay, for now let’s move on. I’d probably want to come back to this point later,
though.

4.6 Extracting the Value: Compact Case

Bob: Now if you look just above the two lines I quoted above, you find:

if s =~ /^-[^-]/ and (value = $’) =~ /\w/
@options[i].valuestring = value

This addresses the case where a one-character option is used, without any space
separating the option and the value, as in -n3, a very compact notation which
we already discussed before.

Alice: What is the meaning of this funny looking repetition of the symbols ˆ-?
They occur twice, with a square bracket in between, and a closing bracket at
the end, as ˆ-[ˆ-].

Bob: This is one of the most confusing aspects in the notation of regular ex-
pressions, this overloading of the meaning of the up-arrow ˆ. In fact, the two
up-arrows here are two completely different things. In order to see this, let us
inspect the whole regular expression:

/^-[^-]/

52 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

The first ˆ specifies the beginning of the string. The presence of - immediately
following means that the string has to start with a - sign. Now the square
brackets are normally used to give you a choice, as in [aei] or [a-f]. In [aei]
it is understood that any of the three letters a or e or i could be present and
still form a match. And in [a-f], any letter in the range a, b, c, . . , f
would form a valid match.

Alice: Yes, that notation I am familiar with. But how can you start at the
beginning of a line for the second time.

Bob: You don’t. Within square brackets, the up-arrow ˆ has the effect of
negating the meaning of the next character. So the combination [ˆ-] simply
means: any character but the - character!

In other words, by writing

if s =~ /^-[^-]/

we ask whether it is true that the string s begins with a hyphen, but does not
begin with two consecutive hyphens. Let me show you:

|gravity> irb
irb(main):001:0> "-n" =~ /^-[^-]/
=> 0
irb(main):002:0> "--nono" =~ /^-[^-]/
=> nil

Alice: Ah, very nice, though difficult to parse for a human like me.

Bob: You’ll get used to it.

4.7 Interesting or Confusing?

Alice: Now that I understand the first half of the first line, let me stare at both
lines again:

if s =~ /^-[^-]/ and (value = $’) =~ /\w/
@options[i].valuestring = value

You have told me that the variable $’ contains the rest of the string, the part
after the part which matched. So if we start with the option "-n", and if we
insist that it should start with one and only one hyphen, then $’ = n, right?

Bob: Wrong.

Alice: Huh?

Bob: Try it!

4.7. INTERESTING OR CONFUSING? 53

Alice: Okay:

|gravity> irb
irb(main):001:0> s = "-n"
=> "-n"
irb(main):002:0> s =~ /^-[^-]/
=> 0
irb(main):003:0> $’
=> ""

Hey, that is strange! Why should it be the empty string? What happened to n
?

Bob: Why don’t you try the compact option-value notation -n3

Alice: Here goes:

irb(main):004:0> s = "-n3"
=> "-n3"
irb(main):005:0> s =~ /^-[^-]/
=> 0
irb(main):006:0> $’
=> "3"

Somehow the n gets eaten up and disappears without a trace, but the 3 survives.

Bob: What happened is that the matching attempt s =∼ /ˆ-[ˆ-]/ involves
two characters: first the hyphen and then the next character, for which it is
checked that it is not a hyphen.

Alice: Ah, although in plain English we can describe this match as ‘a check
that there is one and only one hyphen’, in fact it is a match where the first
two characters are being checked as being an ordered pair ‘hyphen followed by
non-hyphen.’

Now I see what happened. And since this all happens in the case of a one-
character option, the non-hyphen that gets eaten is the option character, so
that what is left is exactly the value that needs to be assigned to the variable
corresponding to the option.

So what you do at the end of this complicated line, is that you check whether
the remainder, stored in $’ contains at least one alphanumeric character or
underscore, which is what the \w stands for.

Bob: Exactly.

Alice: Okay, I see now what happens. But I think you could have written this
in a simpler way.

Bob: How?

Alice: Instead of

54 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

if s =~ /^-[^-]/ and (value = $’) =~ /\w/

you could have used

if s =~ /^-\w/ and (value = $’) =~ /\w/

Bob: Ah, I had not thought about that. I guess I was just to fixated on
hyphenation! But, now that I figured out how to do it, I find my double hat
trick, or double up arrow if you like, quite elegant. Or at least interesting.

Alice: I just find it confusing, rather than interesting, but to each his own taste!
Let’s move on to the last case, at the end.

4.8 Extracting the Value: Vector Case

Bob: This is a lot simpler. Here we are dealing with the case that the option
type is that of a float vector, a vector of the type we have defined before,
with components that are all floating point numbers. As I already mentioned,
a vector on the command line should be given in Ruby array notation, with the
numbers enclosed between square brackets, [].

There is a lot of freedom for the user: the vector can be written as a string, like
"[3, 5]", or without those double quotes directly as [3, 5]. The numbers can
be comma separated, but they can also just be space separated, as in [3 5].
Spaces are allowed next to the brackets: [3 5] and [3 5] and [3 5] are
all equally fine.

There is one catch to be aware of, when you leave of the double quotes: on the
command line [3,5] and [3, 5] and [3,5] are all fine, but [3,5] is likely
to give you an error message.

Alice: Why?

Bob: It depends on the Unix shell you use, but chances are that the shell
tries to interpret this as an attempt to address files in the current directory.
Unless you happen to have a file with the name 3 or a file with the name 5,
and expression on the command line containing [3,5] will probably generated
a short dry message No match.

Alice: That’s good: short and simple, and it makes it clear that there is no
subtle Ruby bug involved.

As for your implementation, let me look at what you wrote for vector parsing:

if @options[i].type =~ /^float\s*vector$/
while (@options[i].valuestring !~ /\]/)
@options[i].valuestring += " " + argv_array.shift

4.9. INSPECTING INITIALIZE GLOBAL VARIABLES 55

You allow some flexibility in writing the type: it could be float vector or
float vector or even float vector.

Bob: Sure, it would seem to restricted to insist on one literal way of writing
it. I can easily see someone adding an extra space between the two words,
and perhaps a tab or whatever would strike them as looking better. I have
consistently given the users that freedom, also in parsing the lines within the
Clop Option class, as we will see in our next journey.

Alice: And then you keep shifting new content from the ARGV array until you
finally encounter a string that contains a closing square bracket]. During that
whole process, you keep adding what you find to the valuestring of the option
you are working with, so that you build up the whole vector again, from the
bits and pieces from the command line that were stored in successive elements
of the ARGV array, here called argv array.

One last question: why don’t you just string those strings together? What is
the need for adding a ” ” between the bits and pieces?

Bob: If all the vector elements were comma separated, as in [2,3,4], there
would be no need to do so. However, I give the user the flexibility to use a
space separated notation as well. Take the example of a vector written as [2
3]. In the ARGV array, this will be distributed over two elements, the first being
"[2" and the second one "3]". Now if you would just string those two strings
together, as you suggested, you would get "[23]", a one-dimensional vector
with one element, 23. Not what you wanted.

Alice: I see. Good! Now I believe there is one station left on our first journey?

4.9 Inspecting initialize global variables

Bob: Indeed. Here is the last method:

def initialize_global_variables
@options.each{|x| x.initialize_global_variable}
check_required_options

end

I am asking each option to do its own work, initializing the internal variables
that contain the external information presented on the command line. For
example, the time step value may have been presented on the command line
as -d 0.001, and in order to give that value to the method evolve that we
have used to integrate an N-body system, we have to store it somewhere in a
variable, which we would normally called dt or something like that.

As we have seen in our new driver, for convenience we chose to use global
variables, which means the name actually has to be something like $dt. Now

56 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

the conversion from the string -d 0.001 to the actual floating point numerical
value $dt = 0.001 is being done within the Clop Option class, by its method
initialize global variable.

Alice: And then you check something about the options. What do you mean
with ‘required’?

Bob: For many options, a default value is specified, in the original definition
string. However, for some options there is no natural default. For example, you
may not want to specify a default value for an output file. Not only is there no
obviously appropriate name for such a file, you don’t want to risk overwriting
another file that the user may have added to the current directory. In that case,
you could start the entry for the output file option in the original here document
with:

Short name: -o
Long name: --output_file_name
Value type: string
Default value: none

The convention used here is that an error message will be generated if the
user does not provide a specific name for the output file on the command line.
And the method check required options checks that all the original none
specifications have indeed been overwritten by values provided on the command
line.

Alice: Instead of check whether all required options have been provided,
you abbreviated the method name. Even for me an eight-word name would have
been too long. Can you show me the code?

Bob: Here it is, all very straightforward.

def check_required_options
options_missing = 0
@options.each do |x|
if x.valuestring == "none"
options_missing += 1
STDERR.print "option "
STDERR.print "\"#{x.shortname}\" or " if x.shortname
STDERR.print "\"#{x.longname}\" required. "
STDERR.print "Description:\n#{x.longdescription}\n"

end
end
if options_missing > 0
STDERR.print "Please provide the required command line option"
STDERR.print "s" if options_missing > 1
STDERR.print ".\n"

4.9. INSPECTING INITIALIZE GLOBAL VARIABLES 57

exit(1)
end

end

Alice: All clear! I think this finishes our first journey?

Bob: Yes, time to finally descend into the Clop Option class.

58 CHAPTER 4. THE FIRST JOURNEY: CLOP, THE NON-HELP PART

Chapter 5

The Second Journey:
Clop option

5.1 Code Listing

Alice: Time to open the black box that contains the helper class that does
all the work behind the scenes, for each individual option. Can you show me
the whole class definition, so that I get an idea of what it looks like, before we
inspect each method?

Bob: Here you are:

class Clop_Option

attr_reader :shortname, :longname, :type,
:description, :longdescription, :printname, :defaultvalue

attr_accessor :valuestring

def initialize(def_str)
parse_option_definition(def_str)

end

def parse_option_definition(def_str)
while s = def_str.shift
break if parse_single_lines_done?(s)

end
while s = def_str.shift
break if s =~ /^\s*$/ and def_str[0] =~ /^\s*$/
@longdescription += s + "\n"

end

59

60 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

end

def parse_single_lines_done?(s)
if s !~ /\s*(\w.*?)\s*\:/
raise "\n option definition line has wrong format:\n==> #{s} <==\n"

end
name = $1
content = $’
case name
when /Short\s+(N|n)ame/
@shortname = content.split[0]

when /Long\s+(N|n)ame/
@longname = content.split[0]

when /Value\s+(T|t)ype/
@type = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = "false" if @type == "bool"

when /Default\s+(V|v)alue/
@defaultvalue = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = @defaultvalue

when /Global\s+(V|v)ariable/
@globalname = content.split[0]

when /Print\s+(N|n)ame/
@printname = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Description/
@description = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Long\s+(D|d)escription/
@longdescription = ""
return true

else
raise "\n option definition line unrecognized:\n==> #{s} <==\n"

end
return false

end

def initialize_global_variable
eval("$#{@globalname} = eval_value") if @globalname

end

def eval_value
case @type
when "bool"
eval(@valuestring)

when "string"
@valuestring

when "int"
@valuestring.to_i

5.2. PARSING AN OPTION DEFINITION 61

when "float"
@valuestring.to_f

when /^float\s*vector$/
@valuestring.gsub(/[\[,\]]/," ").split.map{|x| x.to_f}.to_v

else
raise "\n type \"#{@type}\" is not recognized"

end
end

def add_tabs(s, reference_size, n)
(1..n).each{|i| s += "\t" if reference_size < 8*i}
return s

end

def to_s
if @type == nil
s = @description + "\n"

elsif @type == "bool"
if eval(@valuestring)
s = @description + "\n"

else
s = ""

end
else
s = @description
s = add_tabs(s, s.size, 4)
s += ": "
if @printname
s += @printname

else
s += @globalname

end
s += " = " unless @printname == ""
s += "\n " if @type =~ /^float\s*vector$/
s += "#{eval("$#{@globalname}")}\n"

end
return s

end

end

5.2 Parsing An Option Definition

Alice: That’s not as long as I thought it would be.

62 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

Bob: One of the great things of Ruby: because the notation is so compact, and
because you don’t have to worry about types and declarations and all that sort
of stuff, you can write quite powerful codes in just a few pages.

Alice: Let’s step through the Clop option class. The initializer starts off just
like it did on the higher Clop class level. In that case, the first line was:

parse_option_definitions(def_str)

while here we have only one line, the same apart from the final ”s”:

def initialize(def_str)
parse_option_definition(def_str)

end

And that makes sense, since by definition this helper class takes care of only
one option at a time.

Bob: The next method shows how the parsing gets started:

def parse_option_definition(def_str)
while s = def_str.shift
break if parse_single_lines_done?(s)

end
while s = def_str.shift
break if s =~ /^\s*$/ and def_str[0] =~ /^\s*$/
@longdescription += s + "\n"

end
end

Remember how we wrote the definition of an option block: first we write one
line for each piece of information, such as

Short name: -o

or

Value type: string

Only at the end do we allow an arbitrarily long multi-line description of what
the option is all about. That was the line called Long Description. It contains
the information that will be echoed when we ask for --help on the command
line.

This means that the parsing process is somewhat different from the single-line in-
structions and for the last multi-line block. The method parse single lines done?

5.3. ARE WE DONE YET? 63

takes care of the single lines, while the last few lines of the parse option definition
method take care of the multi-line block.

Of course, I could have written a separated parse multiple lines method, but
that seemed to be a bit of overkill, given that the work can be specified in just
a few lines:

while s = def_str.shift
break if s =~ /^\s*$/ and def_str[0] =~ /^\s*$/
@longdescription += s + "\n"

end

You just keep taking lines off from the def str that contained the whole here
document, and when you encounter two successive blank lines, you stop. Re-
member, we had agreed that two blank lines would signal the start of a new
option block.

5.3 Are we Done Yet?

Alice: So all the rest of the parsing is done in the method parse single lines done?.
Why the question mark at the end of the name?

Bob: This is a nice feature of Ruby, that it allows you to add a question mark
or exclamation mark at the end of the name. You can’t use it as a general
character in the middle of a name; it can only appear at the end. Its use is to
communicate to the human reader something of the intention of the program:
in this case, you might guess that a boolean value is being returned by this
method. If the value is true, then indeed we are done parsing the single lines.
If the value is false, we aren’t done yet.

Alice: I like that, that does make the intention clearer.

Bob: Here is the method:

def parse_single_lines_done?(s)
if s !~ /\s*(\w.*?)\s*\:/
raise "\n option definition line has wrong format:\n==> #{s} <==\n"

end
name = $1
content = $’
case name
when /Short\s+(N|n)ame/
@shortname = content.split[0]

when /Long\s+(N|n)ame/
@longname = content.split[0]

when /Value\s+(T|t)ype/

64 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

@type = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = "false" if @type == "bool"

when /Default\s+(V|v)alue/
@defaultvalue = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = @defaultvalue

when /Global\s+(V|v)ariable/
@globalname = content.split[0]

when /Print\s+(N|n)ame/
@printname = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Description/
@description = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Long\s+(D|d)escription/
@longdescription = ""
return true

else
raise "\n option definition line unrecognized:\n==> #{s} <==\n"

end
return false

end

5.4 A Non-Greedy Wild Card

Alice: I see that you start off with another exercise in regular expressions, but
this one puzzles me:

if s !~ /\s*(\w.*?)\s*\:/

Why do you add a ? after an * ? That seems to be redundant. The * tells
you to expect zero or more instances of the previous character, while the ? tells
you to expect just zero or one instances. No, I take that back, it is not even
redundant, it seems wrong, since ? would be expected to follow the previous
character, and here the * is in the way.

Bob: You should consider the combination of the two characters as one unit:
*? is defined as a ‘non-greedy’ version of the * wild-card character.

Alice: Non-greedy?

Bob: Yes. Normally, the wild card notation is interpreted in a ‘greedy’ way: it
gobbles up as much as it can.

Alice: I would call it a ‘hungry’ way in that case. Can you give me a simple
example of the difference?

Bob: Sure. Let’s use our friend irb again:

|gravity> irb

5.4. A NON-GREEDY WILD CARD 65

irb(main):001:0> s = "abc:def:xyz"
=> "abc:def:xyz"
irb(main):002:0> s =~ /.*:/ ; $’
=> "xyz"
irb(main):003:0> s =~ /.*?:/ ; $’
=> "def:xyz"

In the first regular expression, I ask for a match with an arbitrary number
of characters of any type, followed by a colon. The period can stand for any
character except a new line. As you can see, after the match, what is left over
is "xyz" so the match went all the way to the second colon.

Now in the second regular expression I have added the question mark to make
the match non-greedy. In this case, the string "def:xyz" remains, which means
that the match only included "abc:". This was the first match that satisfied
the minimal requirement of having an arbitrary number of characters ending
with a colon. Our non-greedy operator *? was satisfied at this point, while its
greedy colleague * kept looking for a longer match, and indeed found one.

Alice: Very nice to have the option to stop early. And in our case, this means
that you are allowed to include colons in the definitions, without confusing the
parser, right?

Bob: Indeed. Every line among the single-line definitions has the structure:

<name> : <content>

I do not allow a colon ”:” to appear in the ‘name’ part of the line, but I do allow
colons to appear in the ‘content’ part. This is yet another example of trying not
to limit the user unnecessarily. An example I thought about is where someone
might want to define a classification for stars, and for some reason decides that
it is convenient to use colons. Options to assign stars of different classes could
take on the form:

--star_type "star : MS"

for a main sequence star, or

--star_type "star : MS : ZAMS"

as a further specialization, to indicate a zero-age-main-sequence star. A giant
on the asymptotic giant branch could be specified as:

--star_type "star: giant: AGB"

In all these cases, the non-greedy parser instruction will extract the content part
of the line correctly.

66 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

Alice: I like the idea of keeping maximum flexibility for option specifications,
rather than excluding characters like a colon. Good! And I see in the next line
that you raise an error if you find no colon at all.

5.5 Extracting the Name from a Definition

Bob: Yes. And if a colon is found, everything before the first colon is assigned
to the variable name and everything after that colon to the variable content.

Alice: I understand how content gets its content, so to speak, since $’ is by
definition what is left over after the match. And I also understand that $& would
not have been a good choice for name, since it would have included the colon. I
probably would have started with $& and stripped off the last character.

Bob: That would still not be right, since in most cases you would have wound
up with a name that contained trailing spaces. You could have taken those off
too, of course, but I found a quicker way to do everything at once. They key is
given in the use of the parenthesis in the first line:

if s !~ /\s*(\w.*?)\s*\:/

Alice: That one line is a rich line indeed! What does (\w.*?) mean?

Bob: in general, parentheses in a regular expression can be used for two pur-
poses: they allow you to group characters together and they also allow you to
collect particular parts of the match results that you might be interested. An
example of the first use is to write /(na)*/. This specifies that the group of
letters na is to be repeated an arbitrary number of times. In a word like banana,
it matches against the nana part. An example of the second use is what we see
here in the code.

When parts of a regular expression are put within parentheses, the variable $1
will be given the string that matches the content of the first set of parentheses,
the variable $2 will receive a string containing the content of the second paren-
theses delimited match, and so on. Here there is only one set of parentheses,
enclosing whatever appears after initial white spaces, and before the first colon.

To be specific, a match against the (\w.*?) part requires there to be at least
one alphanumeric character or underscore, corresponding to \w, followed by
arbitrary characters. Since the : in the regular expression /\s*(\w.*?)\:/
is placed outside the parentheses, the colon does not appear in the value of
the variable $1, but everything else up to the colon does appear, apart from
possible white space before the colon. Therefore, $1 will contain the complete
name, with any leading or trailing white space removed.

Actually, removing those leading and trailing white space characters was not
really necessary, as you will see below, since we’re only matching the ‘name’
part of the definitions against various possibilities, and those matches would

5.6. EXTRACTING THE CONTENT FROM A DEFINITION 67

work fine with blank space left in place. I just decided to be extra neat, for a
change.

5.6 Extracting the Content from a Definition

Alice: Let me summarize the idea. Each option definition, apart from the
exceptional Long Description lines, has the one-line structure:

<name> : <content>

You have now successfully extracted the name from an individual line, and now
you enter a case switch, in which you are going to check which name it is you
have extracted, and depending on the name, you’re going to do something with
the corresponding content.

Bob: Precisely. Let us walk through the different possibilities. It helps to
remind ourselves of the structure of a typical option block. Here is what we
could have written for the step size specification:

Short name: -d
Long name: --step_size
Value type: float
Default value: 0.001
Global variable: dt
Print name: delta t
Description: Integration time step
Long description:
In this code, the integration time step is held constant,
and shared among all particles in the N-body system.

You can see in the listing of the method parse single lines done? above that
each of the one-line definitions is being treated in the correct way.

Alice: Let me check. For the long and short name, you allow both spellings,
”name” and ”Name”, in the ‘name’ part of the definition. And since there are
no blanks allowed in the name of the option, it is safest to split off only the first
contiguous non-blank character set from the content string. That makes sense.
And then you assign the actual name, in this case either -d or --step size
to an instance variable of the class Clop Option: @shortname or @longname,
respectively.

Bob: Yes. And I could have done a better job in checking for errors, but you
have to stop somewhere. If someone would write a definition as:

Long name: --step size

68 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

the results would be @longname = --step, and the string "size" would be
discarded.

5.7 Two Types of Mistakes

Alice: I agree that there is no point to make things completely robust in an
iron clad way at this point. Perhaps in a year or so, when we decide to use this
program indefinitely, we can come back and make things more sturdy.

But wait a minute. Is that really correct what you just said? If someone would
have typed "--step size" on the command line, then only the string "--step"
would have been handed to our helper class Clop Option, by the parser in class
Clop, and there still would be no need to use the split method here since in
this case the variable content would contain only the string "--step", and
split would not change anything.

Bob: All true, but I think you are confusing two different things. First we talked
about the writer of a program writing an option block that contains a mistake, in
the form of --step size as the choice of long name for an option. The mistake
here is to leave a space between the two words, rather than an underscore. An
underscore would have had the same effect of making things more readable, as
compared to the simplest choice of --stepsize, but an underscore counts as a
non-blank, so for Ruby "step size" is still a single word, while "step size"
would be considered to be two words.

Now there is a separate mistake that you brought up, where the user of a
program would give a command line that includes, for example, "--step size
0.01". Perhaps the user saw the option description of the writer, and followed
it blindly, not realizing that it was faulty. Or perhaps the program would have
a correct option definition, given as "step size", but the user overlooked the
underscore. In either case, what will happen is that an instance of the class
Clop Option will be created, with a long option name "step". Next, the string
"size" will be parsed, as the next element in the ARGV array, and an attempt
will be made to convert that to a floating point number.

Alice: And that will fail.

Bob: Not necessarily. Again, I could have checked whether a string has the
correct format for a floating point number, but I don’t think I’ve been quite so
meticulous. However, the next step will definitely go wrong: even if somehow
"size" is converted to some kind of number, and assigned to a variable asso-
ciated with the option "--step", then the parser of the Clop class will read in
"0.01", trying to make sense of that as an option. And of course, this is not a
valid option. It does not even contain a hyphen.

Alice: What will go wrong in that case?

Bob: The method find option, which we looked at in our first journey, would

5.7. TWO TYPES OF MISTAKES 69

not find a match with any known option, and so it would return nil. As
a result, the method parse command line options would raise an error, and
halt the program after printing the string

"option "0.01" not recognized"

Alice: Good to know that such mistakes would be caught, and what is more,
would lead to understandable error messages.

By now, I think I need a break. Something tells me this will be a long journey!

Bob: I’m afraid it will be, so perhaps we should split it up into subjourneys.

70 CHAPTER 5. THE SECOND JOURNEY: CLOP OPTION

Chapter 6

More Parsing of Single
Lines

6.1 Recognizing the Type

Alice: I’m ready to continue our exploration of the parse single lines done?.
So far we have only looked at the way it deals with short and long names.

Bob: Yes, let us continue our case study. Before getting into the third when
statement, first a bit of background. So far we have extracted the essential part
of the content string by splitting off its first word, using content.split[0],
but now we will encounter several cases where we have to be more careful than
that.

If the ‘name’ part of a definition has the form "Value Type" or "Value type",
we have to do more than splitting off the first blank-separated substring, since
some types can legally contain more than one word. A physical vector is repre-
sented in our programs as an object of class Vector with floating point numbers
as elements. I reserved the expression "float vector" for this type, since in
the future we might also want to deal with "int vector" or perhaps "complex
vector" or even "quaternion vector" once we implement regularization tech-
niques.

Alice: Let me try to understand the regular expression soup that is supposed
to extract the multi-word type information here, in the line

@type = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

You take the string content, and apply two substitutions to it. First you take
one or more white spaces at the very beginning of the string, if you find them
there, and replace them by the null string; in other words, you take off all leading

71

72 CHAPTER 6. MORE PARSING OF SINGLE LINES

white space.

But why did you write /ˆ\s+/ instead of /ˆ\s*/ ? If there would be no white
space at all, you could still replace it by the null string. Replacing nothing by
nothing would not hurt anyone, would it?

Bob: I suppose you are right. Yes, that must be true; either way would work.

Alice: Now for the second substitution, there you use parentheses again. You
talked about two different uses, but this seems to be yet another use.

Bob: You are right, I probably should have mentioned this as a third way of
using parenthesis. Here the vertical line indicates a choice: it is a type of logical
‘or’ operator. This regular expression matches in two different cases: when the
expression in parentheses is replaced by what is written to the left of the vertical
line, or when it is replaced by what is written to the right of that line.

Let us first look at the left side. This substitution would be equivalent to
sub(/\s*#.*/,"").
Alice: Ah, you strip off a Ruby comment, something that starts with a #
sign, and is followed by whatever: an arbitrary number of arbitrary characters,
indicated by ”.*”. In addition, you remove blank space leading up to the
comment.

Bob: Indeed. Now the second possibility for a match is that the right side
of the vertical bar springs into action, in which case the substitution would be
equivalent to sub(/\s*$/,"").
Alice: And that would only remove whatever blank space there may be just
before the end of the string, indicated by $. Okay, got it!

Bob: Note that this third when statement does something more than assigning
the content of the definition line to the instance variable @type. If the type
happens to be bool, the following action is undertaken:

@valuestring = "false" if @type == "bool"

The variable @valuestring will be given the string "false". This guaran-
tees that any logical flag will always be set to be false, unless the user specif-
ically mentions the flag as an option, in which case the corresponding variable
@valuestring will be set to be "true", as we will see later.

Alice: So this frees the writer of the option block from having to add the line

Default value: false

In the definition of an option block with a boolean value.

Bob: Exactly. The writer can still add this, but it is not necessary. And since
a flag as a command line option does not take a value on the command line, it

6.2. DEFAULT VALUES 73

would be easy to forget to include this line in the definition. Therefore I have
automated the process here.

Alice: What do you mean with “a flag does not take a value on the command
line”?

Bob: Remember the example where the user can ask for extra diagnostics,
by adding -x to the command line? If we really wanted to treat it on the
same level as the time step choice, say, where you would write -d 0.001, we
should ask the user to write -x true. But that would be unnecessarily wordy.
By mentioning -x the user already requests something extra to be done. Not
mentioning this option would leave the value false, mentioning it would make
it true. The advantage of a boolean variable is that there is no third option, so
no need to specify anything!

Alice: Okay, that is clear, and yes, I am all for automatizing, whenever a
situation is unambiguous.

6.2 Default Values

Bob: Now we can quickly walk through the remaining when statements. When
we encounter a Default Value or Default value, written before the first colon,
we assign the content corresponding to that name to the varialbe @defaultvalue,
and then we immediately give that same value to @valuestring.

Alice: In that way, if no command line option for that variable is specified, the
program will run with the default value.

Bob: Exactly. If the default time step would be 0.01, and someone would give
the command line option 0.001, then the @valuestring would be changed from
"0.01" to "0.001". We will see below how that happens.

Alice: But why do you keep two instance variables here, both @defaultvalue
and @valuestring ? You could just have used only one, @valuestring. If you
give that string the default value at first, and then you allow it to be overridden,
it will always have the intended value. What need is there to remember the
original default value separately, in a variable called @defaultvalue ?

Bob: Originally I had only one value, just as you suggested, but then I realized
that it would be nice to let the help facility tell you what the default values are.

Alice: But if you ask for help, by typing ruby some program.rb -h, or by typ-
ing ruby some program.rb --help, you don’t change any of the default values,
so you could ask the help facility to echo whatever is stored in the @valuestring,
can’t you? I still don’t see the need for a separate @defaultvalue variable.

Bob: You’re reproducing my stream of thoughts, when I wrote this. I had the
same idea, initially, but then I realized that someone could type

|gravity> ruby some_program.rb -d 0.1 --help

74 CHAPTER 6. MORE PARSING OF SINGLE LINES

The option parser would first encounter -d 0.1 and set the @valuestring for
the time step option to "0.1", overriding the default value "0.01".

Alice: But why would anybody want to do that?

Bob: Two answers. First, if something like this can happen, it will, and a good
attitude in defensive programming is to be prepared for such eventualities.

Alice: If someone would be writing a book about our dialogues, that line
would be put into my mouth! Since when are you relying on principles, such as
defensive programming?

Bob: I just wanted to make sure you were still listening. Well, let me give you
the more important second reason: it is the use of the ‘bang bang’ command in
Unix.

Alice: You mean typing !! in order to repeat the previous command?

Bob: Yes. It is quite natural for someone to run a program first, and then to
become curious about one of the options. The easiest thing to get help is then
to a help request to the previous command. What I mean is:

|gravity> ruby some_program.rb -d 0.1 -q
clop.rb:148:in ‘parse_command_line_options’:
option "-q" not recognized (RuntimeError)

|gravity> !! -h

This is a much quicker way to get help than to retype the whole line:

|gravity> ruby some_program.rb -h

Alice: I see what you mean. In that case, the time step would have been reset
already, from the default value to 0.1. So therefore you want to store the default
value in a separate memory place. That makes sense.

6.3 A Matter of Principles

Bob: Moving right along, assigning a global variable name to the option is what
happens next.

Alice: So the variable @globalname will contain the name of the actual variable
that will in turn contain the value of whatever quantity will be associated with
the option.

Bob: Yes, I guess this is an example of what the redirection principle you like so
much. It was quite natural to write it this way. After all, the option definitions
we are dealing with here form a type of template. And here we are parsing the
contents of the template. Everything is just one step further removed. Instead

6.3. A MATTER OF PRINCIPLES 75

of a pair {variable, value}, we here have a triple {variable-name-holder, variable,
value}. We’ll come back to this when we will see how the variables get their
values.

The need for this extra meta level can also be seen from the fact that we are
not only dealing with a code user, giving command line options, and a code
writer, giving the option definitions, but with a third person, me in fact, a kind
of meta writer. What I just the writer of a code that incorporates this new
option mechanism is a writer with respect to the user of that code, but is at the
same time a user of this parsing code. A meta user if I am the meta writer.

Anyway, this gets too complicated. All I wanted to say is that it is unavoidable
to have three levels instead of the usual variable-value. And three levels allow
at least two such pairings, and therefore we need a form of redirection these
pairings. So while I’m not a man of many principles, I do see the need for your
redirection principle here.

Alice: You mean the indirection principle, as in indirect addressing. But you
could call it the redirection principle I guess, since you are redirecting the flow
of control from one name to another. But since I have never heard anyone talk
about ‘redirect addressing’, I’ll stick with indirection.

Bob: Sounds too close to indigestion. What would be the best name? Instead
of giving fixed directions as to where to find the value of a variable, we are
giving indirect directions in order to redirect the computer to look in a different
place. But we are still giving directions, neither indirections nor redirections.

Alice: Enough of that – you are convincing me not to mention principles too
often! But wait, this time you started it, talking about principles.

Bob: Okay, we’ll move on. As we discussed before, every option has a special
‘print name’, that determines how the information will appear on the output.
We gave the example of an N-body system, where you expect the particle num-
ber to be printed as N = 100, not as n part = 100 or something cryptic like
that. In this case, N is the print name. And since it could have more than one
word, as in particle number, we have to use the same substitution tricks as
we have used before.

Alice: That double substitution line occurs four times, wouldn’t it be nicer to
write a one-line method for that?

Bob: That occurred to me, but I decided against it. I could have written

def read_content(str)
str.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

end

and then the print name, for example, would be extracted as

@printname = read_content(content)

76 CHAPTER 6. MORE PARSING OF SINGLE LINES

But I concluded that the improvement in readability did not outweigh the extra
complexity of introducing yet another method. Having to let your eyes jump
around to too many places also decreases readability.

Alice: I agree, this is a tough call, either way would have been fine.

6.4 Descriptions

Bob: Finally, we read in the one-line short description, if the name field contains
the word Description, and we start reading in the long description if the word
field contains the words Long Description, or Long description.

Alice: Wait a minute, the beginning of a long description also contains the
word Description, after the word Long. Would that not confuse your parser,
who could mistakenly interpret it as a short description?

Bob: No, since a long description is only allowed at the end of an option block.
This has to be the case, since the only way to find the end of a multi-line
long description is to look for two consecutive blank lines. And when those
lines are found, you are by definition at the end of the option. Therefore, the
method parse single lines done? will always first encounter the short one-
line Description before it finds the multi-line Long Description.

Alice: If there is a short description, that is. If there would only be a long
description, then parse single lines done? would read the first line of it,
and consider it to be a short description.

Bob: And then it would not recognize the next lines, which would form the
actual long description itself, and it would raise an error, printing option
definition line unrecognized:\n==> (next line) <==\n. So it would be
clear that there would be something wrong.

However, there would be no point in writing any option block without a short
description. An important part of our whole approach is to provide a good
help facility. If you want to cut corners, you could imagine leaving out the long
description, and only giving a short one-line description. But it wouldn’t make
sense to be lazy and not write a short description, and yet to go out of your
way to write a long description.

Alice: Logically, yes, but I can easily imagine myself to make a mistake, and
to just forget to include a short description.

Bob: Well, in that case you would get an error message, which would remind
you to mend the error of your way.

Alice: Fair enough. Talking about the long description, if you find the words
Long description, you just set the @longdescription variable to contain
an empty string? Here is the action that follows the recognition of a Long
description :

6.5. REFLECTIONS ON RUBY 77

@type = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

Bob: Yes, I create the empty string in order to have a place to start adding
the multi-line actual description to, line by line. This happens in the previous
method, parse option definition, remember? Here it is again:

def parse_option_definition(def_str)
while s = def_str.shift
break if parse_single_lines_done?(s)

end
while s = def_str.shift
break if s =~ /^\s*$/ and def_str[0] =~ /^\s*$/
@longdescription += s + "\n"

end
end

Note that the value true is being returned when a Long description is de-
tected. This causes the first while loop in parse option definition to end,
with the break statement. As a result, the second while loop is entered, which
reads the lines of the long description, one by one, until two blank lines following
each other are found.

6.5 Reflections on Ruby

Alice: I think I now understand how you parse the single lines. That was quite
an adventure! Still, now that I have gone through it, I must say that it all looks
quite straightforward.

Bob: It is the longest method in the file. If there would have been a natural
way to split it up into smaller methods, I would have done so. But since we are
naturally dealing with a long case statement, I did not see a good way to break
this up.

Alice: Since when are you concerned with writing short and concise pieces of
code? I thought you didn’t particularly like the notion of trying to be modular.
And now you talk like Mr. Modularity himself!

Bob: I know, I’m a bit surprised too, I must admit. But in Ruby, I somehow
find myself writing methods that are much shorter than the subroutines I would
write in Fortran, or functions in C. I wonder why that is.

Alice: I think the language invites you to think in a more structured way. In
contrast, Fortran and C try to please the compiler, not the user, and as a result
you get used to rather more complex ways of expressing yourself. In the process
writing can easily run away to cover many dozens of lines.

78 CHAPTER 6. MORE PARSING OF SINGLE LINES

Bob: And in addition, when you start a new subroutine or function, you have
to be careful about type declarations and all that, which make you think twice
whether you want to jump through those extra hoops. In Ruby, in contrast, it
is the easiest thing in the world to split off a few lines and call it a method.

Alice: Yes, I’ve noticed that. And it helps not only the writer, but also the
reader: if the names of those short methods are well chosen, they effectively
serve as comments. You’ve done very well here, in choosing your names!

Bob: I must admit, it took me a while. When I first started writing all this, I
had introduced different names, but half-way I found that I got quite confused
myself about what was doing what, exactly. I found that by changing the names
to something closer to what was being done in each method, the whole logic
became much clearer.

Alice: Another way in which Ruby naturally invites better code writing. It
would be impossible to know beforehand how each method should be named
since you don’t know what it is going to do until you are well underway with
the prototyping process. By inviting you to write many small methods, Ruby
also invites you to rename them appropriately.

In contrast, when everything is done within three of four humongous subrou-
tines, you can get used to names like firstblock and secondblock and not
even think about changing those later.

Bob: You mean fstblk and scdblk, if you really want to convey the flavor.
Okay, enough meta-talk. Let’s continue our second journey: we are well past
half-way now, so let’s finish the journey.

6.6 A Comic Book Code Line

Alice: Now the next method, short as it is, puzzles me a bit:

def initialize_global_variable
eval("$#{@globalname} = eval_value") if @globalname

end

If this would be the first line I would ever see of Ruby, I would think it would
be someone swearing, in a comic strip. Just to see a succession of these six
characters, ("$#{@, is quite something to behold!

Bob: I hadn’t thought about that, but yes, that does like a bit funny, doesn’t
it? If there is ever going to be a contest for piling non-alphanumeric symbols
on top of each other, this one may have a chance, though I bet that clever
programmers would be able to come up with something much longer. Anyway,
this method does what I have advertised: it goes from variable-name-holder to
variable to value. Let us take it apart, and translate what we find.

6.6. A COMIC BOOK CODE LINE 79

If an option wants to initialize its global variable, say dt for the time step size, it
first looks at the variable @globalname that contains the string with the name
of the global variable, as extracted from the option block in the definition string.
In this case, the string will hold "dt". Note that this is a string, and not yet a
variable. It is what we called the variable-name-holder before.

As usual, #{@globalname} evaluates @globalname and substitutes the result
back into the string that it is part of. But in this case, there is a $ in front of
the result of the evaluation. In our example, #{@globalname} would give just
the two characters dt, while $#{@globalname} results in $dt.

So this is the first step in our double evaluation program: we have gone from
the variable-name-holder @globalname, containing the string "dt" to naming
the actual variable $dt. We have not yet created that variable. We have only
prepared its name, $dt, as part of a longer string. But look at the beginning of
the program line: eval is a method that takes a string, and then executes its
content as if it were a normal line in a program.

In our example, this line will thus begin with:

eval("$dt = eval_value")

This is equivalent to the following program line:

$dt = eval_value

Now in this form, you see that we have actually created a new global variable
$dt.

Alice: I am beginning to understand the process. It is quite amazing what is
going on here, as a result of just one line of Ruby code. There are not just
two evaluations implied, but three. First the value of the variable @globalname
is extracted, through #{@globalname}. Then the string, which it is part of, is
evaluated with the eval command. But as part of this second evaluation, you
execute the method eval value. Something tells me that this method does a
third evaluation.

Bob: You are right. This method takes the variable that is called @valuestring,
which as the name indicates is a string that contains the value associated with
the option – either the default value, or the value that the user has supplied
through the command line. What the method does is evaluating that string,
once again using the eval command.

Let us forget for a moment about changes coming from the command line, and
focus on default initialization of the global variable associated with an option.
Then the logic is that the option block specifies the sentences:

Default value: 0.001
Global variable: dt

80 CHAPTER 6. MORE PARSING OF SINGLE LINES

The value "0.001" and the name "dt", both of them strings, are read in as the
values of the variables @valuestring and @globalname, respectively.

Alice: And what I called the three evaluations are the evaluation of those last
two variables, to recover the two strings, then an evaluation of the string that
says "$dt = 0.001" to the actual command $dt = 0.001. Yes, I think I now
see the logic clearly.

And now that I see it, I also realize why things have to be so complex. Since
this command line option parser cannot have any knowledge about any of the
variables and values, it has to pass both the variables and values around in meta-
variables, one meta-variable containing the variable name and one meta-variable
containing the value of the value, so to speak, the string that contains the value.
And since we are dealing with the value of a value, we have to evaluate that in
order to get the actual value back.

6.7 Evaluating Values

Bob: Yes, that is a good summary. And that is exactly why I choose the name
eval value for the next method: it is evaluation the value of the value string
that contains the actual value. Hard to say all this in words. You did quite
well! Even so, you must admit that the Ruby one-line summary is a lot shorter
than the English summary you just gave.

Alice: And unambiguous, unlike the English sentence. Good! Time to look at
how you implemented the method eval value. If all it does is use the eval
method to go from a string to its value, why then did you write a separate
method for it? It seems that you are really getting addicted to writing short
methods!

Bob: Not so short, actually: you forget here that we have to use a third piece
of information: we cannot evaluate the value of the global variable unless we
know its type, knowledge of which is encoded in the string @type, as we have
seen while parsing the single lines.

Alice: Ah, of course, yes. And different types lead to different actions.

Bob: Indeed. Here is the method:

def eval_value
case @type
when "bool"
eval(@valuestring)

when "string"
@valuestring

when "int"
@valuestring.to_i

when "float"

6.7. EVALUATING VALUES 81

@valuestring.to_f
when /^float\s*vector$/
@valuestring.gsub(/[\[,\]]/," ").split.map{|x| x.to_f}.to_v

else
raise "\n type \"#{@type}\" is not recognized"

end
end

In the case of a boolean variable, we can indeed apply eval. If the value is true,
for example, this will just lead to:

eval("true") = true

In the case of a variable that is a string, nothing needs to be done, since a string
is already a string. In the case of a number, the value string is converted using
the to i method if we are dealing with an integer, or to f if we have a floating
point number.

Things are a wee bit more complicated when we have a vector with floating
point values. In that case we have to do three operations.

First we remove the square brackets and commas, if present. The simplest way
to get rid of them is to replace each of those with a blank space " ". Just
deleting them would be dangerous, since then 1,2, for example, would become
12; 1 2 on the other hand preserves the meaning that we are dealing with two
separate components.

The second step involves converting each component from a piece of string to a
floating point number, after having cut up the string using the split method, to
create an array of little strings, and the map method to apply the to f conversion
to each of the elements of the array.

Finally, the third step consists in converting the array to a proper vector, an
instance of our Vector class, using our to v converter.

Alice: And the impressive thing is that all three steps are done in just one line
of code.

Bob: Yes, one line that contains no less than five methods that are applied
in turn! What is even more impressive is that the whole thing is still quite
readable.

Alice: Yes, let me try to ‘read’ it: you start with a string, and after substituting
some things, you split it into pieces, map the float converter to each piece, and
then apply the vector converter.

Bob: And in that way you naturally evaluate a string to create a value of type
‘float vector.’ It all makes sense!

Alice: It’s hard to believe that I have been writing code for so many years using
more low-level languages like C++ and Fortran.

82 CHAPTER 6. MORE PARSING OF SINGLE LINES

Bob: And hard to go back, although we’ll have to, probably, to get a reasonable
speed.

Alice: We may be pleasantly surprised. This whole parsing program, for ex-
ample, is executed only once, at the beginning of running a program. There is
absolutely no need to speed this up. Whether it takes a microsecond to run or
a millisecond, who cares! Factors of a hundred or more of potential speed-up
are only important in the domain of minutes and more. It is nice to change a
minute of run time into a second, for sure, but to change a second into a few
milliseconds is useless.

Bob: I hope you’re right. We really should look into this speedup business
soon, though.

Alice: I agree.

Chapter 7

Initial State Output

7.1 The to s Method

Bob: We are approaching the end of the second journey. There is only one
method left, to s, apart from a little helper method, add tabs, that acts as a
little accountant, keeping care of how many tabs to add to make the output
pretty. Let me first show the little helper:

def add_tabs(s, reference_size, n)
(1..n).each{|i| s += "\t" if reference_size < 8*i}
return s

end

Alice: That last one is keeping tabs on tabs, right? Well, I’m happy to skip
that one for now. I can easily judge from the output whether you did a good
job there or not. Can you show me the to s method? Judging from the name,
it converts the result of an option block into a string. But what kind of string?
As if we haven’t dealt with enough strings already!

Bob: It prepares the string that the program will print out at the start, as
an echo of its initial state. In our example case of a time step, it will print
something like:

dt = 0.001

Alice: And that is the only thing the user needs to know, after having used an
option – or after having left its value to be the default value, as the case may
be. Fine. That method should be quite short, no?

83

84 CHAPTER 7. INITIAL STATE OUTPUT

Bob: No, not really. It started off short and sweet, but it grew and grew while
I was improving the code. There is quite a bit of bookkeeping that needs to be
done here. Here is the code:

def to_s
if @type == nil
s = @description + "\n"

elsif @type == "bool"
if eval(@valuestring)
s = @description + "\n"

else
s = ""

end
else
s = @description
s = add_tabs(s, s.size, 4)
s += ": "
if @printname
s += @printname

else
s += @globalname

end
s += " = " unless @printname == ""
s += "\n " if @type =~ /^float\s*vector$/
s += "#{eval("$#{@globalname}")}\n"

end
return s

end

7.2 The Header Option

Alice: It is longer than I thought. And it is not just a matter of many when
options in a case statement: there seems to be some genuine complexity here.

Bob: Let me run you through the various switches. The first if statement
concerns the description of the program as a whole. We have decided that the
here document that contains this one long list of all options will start off with
information about the program as a whole. This could take the form of:

Description: A code doing such-and-such
Long description:
This is a code doing such-and-such for the purpose of so-and-so.
This code may come in handy if you want to do this-and-that.
Be warned that it may not always work. And beware of the dog.

7.2. THE HEADER OPTION 85

This is an unusual option block, as option blocks go. Parsing so far has posed no
problem, since we could parse the Description and Long Description like we
parsed any other option. Also, when we talked about the eval value method,
we could forget about this header option that is a not-an-option option.

Alice: Could we, really? Now that I look at eval value again, I see that it
raises an error if @type is not one of the known values. But this header option
has no type at all! So it surely will raise an error.

Bob: It will raise an error when it is invoked for the header option. But the
key here is that it will never be invoked! I now realize that we forgot to talk
about that. We were so distracted by what you called the comic book sequence,
("$#{@, that we did not really finish looking at that line till the end. It came
from the one-line method initialize global variable:

def initialize_global_variable
eval("$#{@globalname} = eval_value") if @globalname

end

Note that it only invokes the eval value method if the variable @globalname
exists. And that variable springs into existence only when parse single lines done?
encounters a line in the definition string that starts with Global Variable or
Global variable. And since the header option block contains no such line, the
eval value method will never be called for that option.

Alice: All is well then. I had completely forgotten about the header option.
And I now see the meaning of the if statement at the top of to s:

:include .clop.rb-14

The header option is the only one that does not carry a type, so at the start of
the program, the one-line short description will be echoed.

Bob: Indeed. What will happen is:

|gravity> ruby some_code.rb
A code doing such-and-such
Time to stop integration :
First interesting variable : x = 1.0
Second interesting variable : y = 3.14
. . .

After the one-line summary of what the code is about, it will start listing the
values of the global variables.

Alice: But using their print name.

86 CHAPTER 7. INITIAL STATE OUTPUT

7.3 A Boolean Option

Bob: Exactly. We’ll get to that in a moment. We’re done with the case of the
header option. Let us have a look at what needs to happen for an option of
type boolean:

elsif @type == "bool"
if eval(@valuestring)
s = @description + "\n"

else
s = ""

end

If the value is true, in other words if @valuestring == "true", that means
that the user has invoked this option on the command line. In that case, a
short message should be printed out. Ah, I see that the example I just gave
only contained a header option and specific values of non-boolean type. Let me
throw in a boolean option:

|gravity> ruby some_code.rb
A code doing such-and-such
First interesting variable : x = 1.0
Extra diagnostics will be provided
Second interesting variable : y = 3.14
. . .

This ‘Extra diagnostics’ line would be the result of the user providing a -x
option, for example, on the command line. Now if the user chooses not to
provide that option, there is nothing to report. Also, in that case, the option
will retain its default value, which for a boolean variable is always false. In
that case, the else part of the if...else statement will kick in, and only the
empty string will be added to the string s that will be returned by to s: nothing
will be added at all.

Alice: Continuing down the to s function, we have dealt with the cases of the
header option and of boolean options. All other options are dealt with in the
final else clause of the initial if statement.

Bob: Yes, because all other options have genuine values that need to be reported
as such.

7.4 A Hack

Alice: The following lines:

7.4. A HACK 87

s = @description
s = add_tabs(s, s.size, 4)
s += ": "
if @printname
s += @printname

else
s += @globalname

end

must result in producing the example line

First interesting variable : x

Right?

Bob: Right indeed. The description of the variable is followed by some white
space counting magic followed by a colon, and then we get the proper print
name, if it is provide. If not, we just use the internal name for the global
variable associated with this option.

Alice: But I’m puzzled about what follows next:

s += " = " unless @printname == ""

What is the meaning of the unless here?

Bob: Ah, this is another ‘feature’ that I built in. I was thinking about running
an N-body code . . .

Alice: . . . which is how we got into all this . . .

Bob: . . . yes, hard to believe, I feel like I’m turning into a software engineer.
But just like an observer needs a telescope, which requires quite a bit of hardware
engineering, a theorist interested in simulations needs a software environment,
which requires quite a bit of software engineering.

Alice: Hear, hear!

Bob: So, thinking about running an N-body code, I realized that I would like
to see the time step echoed, as well as the other physical parameters, in the
form of description : name = value, as in

Integration time step : dt = 0.001

but for the case of an option -o output file, it would look a bit strange to
have in the initial state list the line:

Name of the outputfile : output_file = run.out

88 CHAPTER 7. INITIAL STATE OUTPUT

It would be much more natural to have:

Name of the outputfile : run.out

since there is no reason in this case to echo the global variable name used to
hold the output file name, nor is there any appropriate print name I could think
of. In this case, the description says it all!

So I decided to build in a way to block the appearance of ”name = ” for such a
case.

Alice: How did you do that?

Bob: I did not feel like adding yet another variable, like @no name requested.
So I made an inventory of possible cases. If an option does have a print name,
that name will be used. If it does not have a print name, the global variable
name will be used. And then I realized the solution: if an option has a print
name of length zero, just the empty string "", that could be interpreted as a
request to remain silent and not print anything, neither the name, which is
already nothing, nor the equal sign normally following it.

I admit, it is a bit of a hack, but it works. So if @printname == "" there is no
need to put an = sign after the description, and that what is expressed in the
line with the unless in it that you asked about:

s += " = " unless @printname == ""

7.5 A Vector Option

Alice: Yes, it is a hack alright, but if it works, it works.

Bob: It works.

Alice: Good! But now I’m puzzled by the next line in the to s code:

s += "\n " if @type =~ /^float\s*vector$/

What does that do?

Bob: I again had in mind our experience with an N-body code. When we print
out a vector, we may want to have full machine accuracy, double precision. And
if we do a three-dimensional simulation, which is normally the case, we need to
print three numbers, each of which will take a space of two dozen characters.
That together will already span a normal output line. Therefore, if we start
a line with a description, the float vector will run off the page. To prevent
that, I added a new line, just after the colon, for these kind of vectors.

As an example for an N-body code, where you could specify choosing three
particles, and a shift in the center of mass position as follows:

7.6. A PYRAMID OF EVALUATIONS 89

ruby some_N_body_code.rb -n 3 -v [3, 4, 5]

You will then have the following initial state print-out:

Number of particles : N = 3
Shifts center of mass by : rcom =
3.0000000000000000e+00 4.0000000000000000e+00 5.0000000000000000e+00

Alice: That does look much better than running off the page, I agree.

Bob: Somehow we are still under the influence of the original 80 column limi-
tation of Fortran, it seems.

Alice: I admit that I always try to keep my output fitting within 80 columns.
For of habit, I guess. And I don’t like people sending me email that runs over
80 columns either.

7.6 A Pyramid of Evaluations

Bob: All a matter of taste. Well, one more line to go, at the end of to s :

s += "\n " if @type =~ /^float\s*vector$/

This must finally produce the actual value, that what appears to the right of
the equal sign in the initial state output.

Bob: Yes, and it does so by a three-stage evaluation, all bundled in one state-
ment line.

Alice: Wow, that looks impressive. This will be my final test to see whether I
now really understand what is going on. A concrete example will help. In the
case of a time step size option, we have

@globalname = "dt"

The first evaluation produces the string

"$#{@globalname}" = "$dt"

which is a string holding the name of the global variable $dt.

The second evaluation is a call to eval and it produces:

eval("$#{@globalname}") = eval("$dt") = $dt

90 CHAPTER 7. INITIAL STATE OUTPUT

the global variable itself.

Then the third evaluation produces a string that contains the value of this global
variable:

"#{eval("$#{@globalname}")}\n" = "#{eval("$dt")}\n" = "#{$dt}\n" = "0.01\n"

with a new line character at the end, to finish of the line.

Bob: Congratulations! You passed the exam.

Alice: And I also realize that, if we wanted to actually use the value of the
time step here, we would have to do a fourth evaluation, to go from the string
"0.01" to the value 0.01. Let me just write it down, to see what it looks like.
And I can forget about the new line here. The value should be:

eval("#{eval("$#{@globalname}")}") = 0.01

Bob: That looks right to me.

Alice: So you go from a variable to a string to a variable to a string to a
variable. Well, well, and you told me the whole thing works?

Bob: Yes, it works. I’ll give you a demonstration after we have completed our
three journeys. This, by the way, is the end of the second journey, which is by
far the longest one.

Alice: Not too surprising, since it is a journey into the kitchen, so to speak,
to sea what is actually cooking in the various pots and pans. The other two
journeys take place in the restaurant, where you’re dealing with the food and
the menu, but not the details of the preparation.

Bob: Indeed, the third journey will be shorter.

Chapter 8

The Third Journey: Clop,
the Help Part

8.1 Two forms of Help

Alice: Hi Bob! Time for our third and last journey.

Bob: Hi Alice! Yes, we covered everything as far as parsing the options is
concerned: both the definitions of the options by the writer of a program, and
the way the options are set on the command line by the user of a program.

The only thing left to do is to see how the help mechanism is implemented. This
is all done on the top level, within the Clop class that we visited in our first jour-
ney. Do you remember the flow of control? The initializer of the Clop class did
three things, by invoking the following three methods: parse option definitions,
parse command line options, and print values.

Of these three methods, all the work for the first and third one is done in the
lower-level class Clop Option that we visited at length in our second journey.
Only the middle one, parse command line options, required more work on the
top-level, as we saw in the first journey, where we skipped the ‘help’ part. Let
me print out this method again:

def parse_command_line_options(argv_array)
while s = argv_array.shift
if s == "-h"
parse_help(argv_array, false)
exit

elsif s == "--help"
parse_help(argv_array, true)
exit

91

92 CHAPTER 8. THE THIRD JOURNEY: CLOP, THE HELP PART

elsif i = find_option(s)
parse_option(i, s, argv_array)

else
raise "\n option \"#{s}\" not recognized; try \"-h\" or \"--help\"\n"

end
end
initialize_global_variables

end

There is only one method that we have to inspect, parse help. The first argu-
ment is the array ARGV that contains the pieces of the command line, a bunch
of little strings that have been extracted from the command line by cutting it
wherever blank space appeared. The second argument is a flag that determines
whether we want to have extensive help information. The -h option asks for a
minimal amount of help information, in short form, whereas the --help option
asks for the long form of help.

Alice: No surprises here: all very clear.

8.2 Help for Selected Options

Bob: Before inspecting the parse help method, let me first describe the idea
behind the help facility as I have implemented it. If you type:

|gravity> ruby some_program.rb -h

you will get a one-line help message about each possible option. However, if you
prefer to have less output, and you are only interested in one option, you can
type:

|gravity> ruby some_program.rb -h -o

and this will give you only one line of output, a short description of the -o
option. This is especially useful for the case of long help, since the command:

|gravity> ruby some_program.rb --help

may well generate a few pages of help, if you have a well documented program
with many options. In that case it will be much easier to find what you want if
you only order help for the options you are interested in.

Alice: Can you get help for, say, three options?

Bob: Yes: if you type:

8.3. PARSING HELP 93

|gravity> ruby some_program.rb --help -a -b --some_other_option

you will get get long help for all three options, but not for the other options
that are not mentioned. Note that you can mix short and long descriptions of
options. How you name an option, long or short, has no influence on the help
output. If you use -h you only get one-liners, and if you use --help you get
long information, several lines per option, independent of whether you use long
or short names for the options themselves.

Alice: What will happen if you type:

|gravity> ruby some_program.rb -o -h

Bob: In that case, it is treated as if you would have typed:

|gravity> ruby some_program.rb -h

which means that you get one-line help for all options. The reason is that such
a line as you just gave can naturally be generated through the use of a Unix !!
command, as we already discussed, and the presence of the -o is likely to be a
matter of laziness, rather than significance. If your previous command has been

|gravity> ruby some_program.rb -o

and if you then decide you what short help for that particular option, you have
to type:

|gravity> !! -h -o

which the Unix shell translates into:

|gravity> ruby some_program.rb -o -h -o

and is then interpreted by the Clop help parser as if you had typed:

|gravity> ruby some_program.rb -h -o

8.3 Parsing Help

Alice: That is clear and reasonable. Can I see the actual help parser?

Bob: Here is the parse help method:

94 CHAPTER 8. THE THIRD JOURNEY: CLOP, THE HELP PART

def parse_help(argv_array, long)
all = true
while s = argv_array.shift
if i = find_option(s)
all = false
print_help(long, i)

end
end
print_help(long) if all

end

The variable all is a boolean flag. If it is true, we will print help information for
all options. If help is requested only for selected options, this flag will be set to
the false value. We start off with all = true. Then we inspect the ARGV array,
and if we find one or more options present on the command line following the
help request, then we offer selected help for each option encountered, through
a call to print help, while setting the all flag to be false.

The first argument of print help passes on the flag which we received earlier,
specifying whether we want to have the long form of help. The second, optional
argument of print help contains the number i, specifying the selected option.
If we invoke the method print help without a second argument, it is assumed
that we want to have help for all options. Here is the method:

def print_help(long, i = nil)
if i
STDERR.print help_string(@options[i], long)

else
@options.each{|x| STDERR.print help_string(x, long)}

end
end

Alice: I see what you mean with the optional second argument: if you leave
that one out, it will be set to nil, the if test will fail, and so the else branch
will be taken, and all options are printed out. However, if you specify an option
i, the if test is successful, and only that option will be printed. In both cases
you use the same procedure: you print a string on the standard error stream,
provided by the method help string.

8.4 Printing Help: the Idea

Bob: Yes, and before showing you how that method is implemented, let me
sketch the idea behind it. Let us start with the short help form, invoked by -h.
There are three types of options, that have to be treated differently.

8.5. PRINTING HELP: THE METHOD 95

First, there are the run-of-the-mill options, such as the time step size. I decided
to give it a short help string as follows:

-d --step_size : Integration time step [default: 0.001]

Both forms of the command-line version of the options are shown, followed by
the short description of the option, and then between square brackets the default
value is shown.

Second, there are the boolean options, such as the request for extra diagnostics.
I decided to let that generate the following short help string:

-x --extra_diagnostics : Extra diagnostics

For a boolean option, the default value is always false, so there is no need to
list that.

Third, there is the header option, which does not have any value, and therefore
also not a default value; in fact it does not have a way of writing it as a command
line option. It really is a not-an-option option, since it only contains short and
long description strings. Therefore, this is the only thing that will be printed.
In short form, it could be just:

A code doing such-and-such

To summarize, a code that has only these two options, together with this header
option, will provide the following short help:

|gravity> ruby some_program.rb -h
A code doing such-and-such
-d --step_size : Integration time step [default: 0.001]
-x --extra_diagnostics : Extra diagnostics

Alice: I like the layout. Great! How did you implement it?

8.5 Printing Help: the Method

Bob: Here is the method:

def help_string(option, long_flag)
s = ""
if option.type
s += option_name_string(option)

end

96 CHAPTER 8. THE THIRD JOURNEY: CLOP, THE HELP PART

if option.type or not long_flag
s += "#{option.description}"
s += default_value_string(option)
s += "\n"

end
if long_flag
s += "\n#{option.longdescription}\n"

end
return s

end

I start with a null string s. If we are dealing with a header option, there
is no type, and there are also no command line option names, such as -d or
--step size. So only if there is a type, we add those command line option
names; this is taken care of by the following method:

def option_name_string(option)
s = ""
if option.shortname
s += "#{option.shortname} "

end
s += "#{option.longname}"
s = option.add_tabs(s, s.size, 3)
s += ": "
return s

end

My assumption is that every option has a long way to call it, as in --step size,
but it may or may not have a short way -d. After all, some people don’t like
one-letter options.

Alice: People like me.

Bob: And others, like me, who do like short options, may literally run out of
options if they write a program with more than 26 options.

Alice: If you really write such a program, I suggest that you cut it up into
smaller pieces: 26 options strikes me as too much of a good thing.

Bob: Don’t be so sure: there are plenty of programs that you use every day
that have loads of options. Most of them you’ll never use, but occasionally there
you may hit upon a need for an arcane option, and then you’ll be happy if it is
provided. In any case, this is what I decided: short options are optional, pun
not intended, while long options are not optional, but required.

Alice: With the exception of the header option, which never will invoke the
option name string since the first if statement in help string prevents it

8.6. WHAT IS NEEDED WHEN 97

from doing so. Good! And finally, you add however many tabs are needed,
through your add tabs helper method in the Clop Option class, and then a
colon. So that is what produces the left-hand side of each normal option help
output, for the short help version at least.

Bob: And for the long help version as well. We have not used the information
from the long flag, so far. So in both cases, for short and long help, the first
if statement in help string will provide the left hand side, up to the colon, of
a line such as:

-d --step_size : Integration time step [default: 0.001]

8.6 What is Needed When

Alice: What is the meaning of the second if statement in help string:

if option.type or not long_flag
s += "#{option.description}"
s += default_value_string(option)
s += "\n"

end

Bob: If the if statement tests true, the following three lines are executed,
which do what they say they do: they print the description of the option, to the
right hand side of the colon, followed by the default value. This then finishes
the one-line short help version.

Now the if test requires some explanation. For all options, except the header
file, there is a type associated with the option, so the if test returns true and
the three lines are executed. The only possible exception is the case where the
option is the header option. In that case we have to discriminate between two
possibilities.

If we request short help, we do want a short description of what the program
is all about. So in that case we do want to execute the three lines following
the if statement. Or more precisely, we want the first and the last line to be
executed; there is no default value, so the method that is invoked in the second
line, default value string has the responsibility to do nothing in the case of
a header option.

However, if we request long help, there is no point in presenting both the short
and the long description of what the program is doing, so we skip the short
description, and move on directly to the long description. This is the reason for
the complex looking if statement. It only tests false if option.type == false
and long flag == true, that is when the option is a header option, with the
request for long help.

98 CHAPTER 8. THE THIRD JOURNEY: CLOP, THE HELP PART

Alice: For all other options, when you ask for long help, you provide short help
as well, for good measure?

Bob: Yes, I decided to do that. One reason is that gives us a quick way to get
the default value information right at the top. Another reason is that the short
information then acts as a type of title line for the longer help paragraph that
follows. Here is an example of what you could expect for, say, the time step
information, first for short help:

|gravity> ruby some_program.rb -h -d
-d --step_size : Integration time step [default: 0.001]

and then for long help:

|gravity> ruby some_program.rb --help --step_size
-d --step_size : Integration time step [default: 0.001]

In this code, the integration time step is held constant,
and shared among all particles in the N-body system.

Notice that I include a blank line between the short information part and the
actual long information part, as answer to a long help call. This makes every-
thing a bit more structured, and therefore easier to read, when you are faced
with a whole bunch of options.

Alice: And the last part is what is printed out as a result of testing the third
if statement in help string:

if long_flag
s += "\n#{option.longdescription}\n"

end

8.7 The Finishing Touch

Bob: Yes. And the only thing I haven’t shown you yet is the method that
prints the last part of the right-hand side of a short help line, where the default
value is given:

def default_value_string(option)
s = ""
if option.type and option.type != "bool"
reference_size = "#{option.description}".size + 2
s = option.add_tabs(s, reference_size, 4)
s += " [default: #{option.defaultvalue}]"

8.7. THE FINISHING TOUCH 99

end
return s

end

If we are dealing with a header option, or an option with a boolean type, no
default should be printed. The actual value is evaluated in the line

s += " [default: #{option.defaultvalue}]"

and the rest is just bookkeeping stuff to get the blank lines and tabs all posi-
tioned correctly.

Alice: Congratulations again, Bob! This is a great tool that you have created.
It will be so nice to have a common user interface for all the programs that we are
going to write from now on. For each program, we will now what to expect: how
to specify the options, and how to get information about the options through
the fancy help mechanism you have developed here.

Most importantly, it will invite us to provide the right type of a help descriptions
right away in the same file as where we write a piece of code. Rather then trying
to write a separate manual, and then forgetting to update it, we can now provide
the important information in a ‘here document’ as part of the same file in which
we store the code lines that do the work. Excellent!

Bob: Well, you shouldn’t give me all the credit. We developed the idea to
provide option blocks together. And in fact, it was your criticism that prevented
me from being happy with my original form of a command line parser, so you
were the one who started it all!

Alice: Thanks, but I think I played the easier role. You implemented it all.

Bob: It depends on what you’re good at, I guess. I find it easier to code
something up, once I get the basic idea. What I find much harder is to get out
of an accepted mind set, and to look at a problem with fresh eyes.

Alice: Watch out, Bob! This is the second time that you sound out of character.
Everyone would have expected that you would not be that much interested in
thinking about accepted mind sets, let alone trying to get out of one. As I
noticed earlier, if someone were writing a book about our discussion, they would
have put such a line in my mouth.

Bob: Well, it’s good that nobody will be doing such a silly thing!

100 CHAPTER 8. THE THIRD JOURNEY: CLOP, THE HELP PART

Chapter 9

A Built-In Test Facility

9.1 Testing Without a Driver

Alice: Have you tested the whole parsing mechanism that you have written?

Bob: Yes, and as far as I can see, it all works as advertised. At first, while I was
writing the Clop class, I put the definition of the class, as well as the definition
of the helper class Clop Option, in the file clop.rb, and I used a different file
to test the whole thing. That other file contained a driver with a long ‘here
document’, and a call to parse command line, the only method that is used to
let Clop do its work.

But after a while, it occurred to me that that I might as well add the driver to
the end of the clop.rb file, in a clever way. You see, the reason I did not do
it right away, is that I did not want to prevent another program from including
the clop.rb file. A typical application program, such as an N-body code, can
include a line at the top that reads:

require "clop.rb"

And if the file clop.rb includes a test driver at the end, that driver will be
included in the application file, which is not what we want.

Alice: And you found a solution, to have your cake and eat it, that is to include
the driver part and yet make it invisible for the application program?

Bob: How did you guess! That is exactly what I did. The trick was to add the
following statement, after the definition of the classes and everything else that
has to be included in the application program, and before the start of the driver
block:

if __FILE__ == $0

101

102 CHAPTER 9. A BUILT-IN TEST FACILITY

Here the global variable $0 contains the name of the program that you are
running. If you run the clop.rb file directly, by typing:

|gravity> ruby clop.rb

then Ruby will give the string "clop.rb" to the variable $0. However, if you
include the line

require "clop.rb"

in a file called some other program.rb, the value of $0 will be the string
"some other program.rb".

The key here is that the variable FILE always gets the value of the file in
which it occurs. So the variable FILE in the file clop.rb will always get
the content "clop.rb", independently of whether you run clop.rb directly,
or whether you run another program that includes a require statement for
clop.rb.

Alice: Therefore, only when you run clop.rb directly, with the explicit com-
mand ruby clop.rb, is the equality guaranteed. Clever indeed! So if that is
what you did, can I try it?

Bob: Please do!

9.2 Required Options

Alice: I will start without any options, to see what happens:

|gravity> ruby clop.rb
option "-n" or "--number_of_particles" required. Description:

Number of particles in an N-body snapshot.

option "-o" or "--output_file_name" required. Description:
Name of the snapshot output file.
The snapshot contains the mass, position, and velocity values
for all particles in an N-body system.

Please provide the required command line options.

Wow, that’s a lot more than I expected. Where did that all come from?

Bob: In defining the option blocks, you can specify the default value none,
which means that no default is given, which in turn means that the user should

9.3. A BOOLEAN OPTION 103

provide one. I included various options in the here document of my test driver,
and two of them I gave the the default value none.

The fact that you see so much output is a result of the action of the method
check required options, which prints out the whole long description, to tell
you in detail what type of options you should minimally provide.

Alice: Let me see what happens if I provide the first option:

|gravity> ruby clop.rb -n3
option "-o" or "--output_file_name" required. Description:

Name of the snapshot output file.
The snapshot contains the mass, position, and velocity values
for all particles in an N-body system.

Please provide the required command line option.

It still complains about the other option, as it should. And it even knows about
English grammar. Look: it talks at the end about the missing ‘option’ rather
than the missing ‘options’, as it did when two options were missing. Nice touch.

Bob: Thanks! I like to get such details straight. A matter of craftsmanship, as
they used to call it. Why don’t you add the second option too? No output file
will be created here; it is just a test.

Alice: Okay, this should stop the complaints:

|gravity> ruby clop.rb -n3 -o tmp.out
Command line option parser
Softening length: eps = 0.0
Time to stop integration: t = 10.0
Number of particles: N = 3
Shifts center of mass velocity: vcom =
3.04.05.0

Name of the outputfile: tmp.out
Star type: star_type = star: MS

Ah, the whole list of default options, and on top a one liner that describes what
this program is doing. And everything is lined up perfectly. Indeed a matter of
craftmanship, I would say.

9.3 A Boolean Option

Bob: Glad you like it! How about trying out a boolean value?

104 CHAPTER 9. A BUILT-IN TEST FACILITY

Alice: Sure. Let’s see. But, wait a minute. All boolean values by default are
set to false. And boolean options are only reported in the initial state printout
if they are true. So we have a catch 22 here: if I don’t give the boolean options,
they will never appear, so how do I know how to ask for those options. How do
I find out what their command line names are?

Bob: Ahem.

Alice: You’re not going to help me and give me a hint at least?

Bob: Going to help you?

Alice: Ah, of course, the help facility. I can ask the program itself. Okay:

|gravity> ruby clop.rb -h
Command line option parser
-s --softening_length: Softening length [default: 0.0]
-t --end_time: Time to stop integration [default: 10]
-n --number_of_particles: Number of particles [default: none]
-x --extra_diagnostics: Extra diagnostics
-v --shift_velocity: Shifts center of mass velocity [default: [3, 4, 5]]
-o --output_file_name: Name of the outputfile [default: none]
--star_type: Star type [default: star: MS]

Ah, there it is: our good friend --extra diagnostics, or simply -x. That must
be a boolean option.

Bob: Try it!

Alice: By just adding -x at the end, yes? That’s easy, as long as I keep
remembering to add the required -n and -o options as well.

Bob: Don’t worry, the program will remind you if you don’t.

Alice: Let there be boolean initial state output:

|gravity> ruby clop.rb -n3 -o tmp.out -x
Command line option parser
Softening length: eps = 0.0
Time to stop integration: t = 10.0
Number of particles: N = 3
Extra diagnostics
Shifts center of mass velocity: vcom =
3.04.05.0

Name of the outputfile: tmp.out
Star type: star_type = star: MS

And so there is! This is fun.

9.4. A VECTOR OPTION 105

9.4 A Vector Option

Bob: How about shifting the velocity of the center of mass?

Alice: With -v or --shift velocity, I see from the short help output. Let
me try the longer form. I see that the default value for this vector has three
components. Am I allowed to work in two dimensions as well, for a three-
body scattering experiment in a plane, say, or do you insist on working in three
dimensions, in which case I could set the third component equal to zero?

Bob: Why don’t you ask the program?

Alice: You’re getting mischievous. Ask the program? Ah, with the long version
of help perhaps? Will that tell me?

Bob: Remember, if you type --help --some option, you will get a long form
of help for that option.

Alice: Let me try:

|gravity> ruby clop.rb --help --shift_velocity
-v --shift_velocity: Shifts center of mass velocity [default: [3, 4, 5]]

The center of mass of the N-body system will be shifted by this amount.
If the vector has fewer components than the dimensionality of the N-body
system, zeroes will be added to the vector.
If the vector has more components than the dimensionality of the N-body
system, the extra components will be disgarded.

Now that is impressive. It answers all that I wanted to know and more!

Bob: I can’t guarantee that all my programs will be that helpful, but at least I
made a start here.

Alice: Here is my attempt at a two-dimensional shift:

|gravity> ruby clop.rb -o tmp.out -n 3 --shift_velocity [2, 3]
Command line option parser
Softening length: eps = 0.0
Time to stop integration: t = 10.0
Number of particles: N = 3
Shifts center of mass velocity: vcom =
2.03.0

Name of the outputfile: tmp.out
Star type: star_type = star: MS

And it behaves as I expected it to.

106 CHAPTER 9. A BUILT-IN TEST FACILITY

9.5 A Star Type Option

Bob: Why don’t you try to play with the type I introduced for classifying stars.
I added that as another test for the whole concept of a general parser.

Alice: Classifying stars? Okay, I got it now: I won’t ask you any questions
anymore, I’ll just ask the program. First I have to find which option I should
be dealing with:

|gravity> ruby clop.rb -h
Command line option parser
-s --softening_length: Softening length [default: 0.0]
-t --end_time: Time to stop integration [default: 10]
-n --number_of_particles: Number of particles [default: none]
-x --extra_diagnostics: Extra diagnostics
-v --shift_velocity: Shifts center of mass velocity [default: [3, 4, 5]]
-o --output_file_name: Name of the outputfile [default: none]
--star_type: Star type [default: star: MS]

I see: star type. And this happens to be an example of an option that does
not have a short name. After all, both -s and -t are taken already, and rather
than inventing an unmemorable name like -q for the star type, it makes more
sense to stick to a longer name that has a clearer meaning. I completely agree.

The next step is to find out more about this particular option:

|gravity> ruby clop.rb --help --star_type
--star_type: Star type [default: star: MS]

This options allows you to specify that a particle is a star, of a
certain type T, and possibly of subtypes t1, t2, ..., tk by specifying
--star_type "star: T: t1: t2: ...: tk". The ":" separators are allowed
to have blank spaces before and after them.

Examples: --star_type "star: MS"
--star_type "star : MS : ZAMS"
--star_type "star: giant: AGB"
--star_type "star:NS:pulsar:millisecond pulsar"

And here we have an example of allowing extra colons in the content of the
definition of an option, as you discussed when you introduced the concept of a
non-greedy operator in a regular expression. Let me try one of the examples:

9.6. NO COMMENT 107

|gravity> ruby clop.rb -o tmp.out -n 3 --star_type star : MS : ZAMS
clop.rb:143:in ‘parse_command_line_options’: (RuntimeError)
option ":" not recognized; try "-h" or "--help"

from clop.rb:115:in ‘initialize’
from clop.rb:267:in ‘new’
from clop.rb:267:in ‘parse_command_line’
from clop.rb:377

9.6 No Comment

Hey, what happened? Your long help facility must have given me the wrong
answer! I tried one of the examples given there.

Bob: Not quite.

Alice: What do you mean? I did not make any spelling mistake: here it is:
star type is spelled correctly, and so is star. And I thought I had a freedom
in choosing whatever else would follow.

Bob: Why don’t you look at what the error message is telling you.

Alice: You really want the program to help me, and I must admit, it would
be an accomplishment if your error messages would tell me what went wrong,
without you doing the hand holding. Let’s see. The program complains that
the option : is not recognized. But you told me that the non-greedy operator
would take care of any and all extra colons!

Bob: No comment.

Alice: Okay, okay, I’ll struggle on. The first : I gave was the one following the
word star. I have a space between star and :, but that space also occurred in
the example suggested by the long help output.

Still, I have to do something, wiggle some wires somewhere, to learn more, so
let me write the same thing without a space, just to see whether that makes a
difference.

|gravity> ruby clop.rb -o tmp.out -n 3 --star_type star: MS : ZAMS
clop.rb:143:in ‘parse_command_line_options’: (RuntimeError)
option "MS" not recognized; try "-h" or "--help"

from clop.rb:115:in ‘initialize’
from clop.rb:267:in ‘new’
from clop.rb:267:in ‘parse_command_line’
from clop.rb:377

Now it complains that option MS is not recognized. Hmmm. What would happen
if I don’t give any spaces at all?

108 CHAPTER 9. A BUILT-IN TEST FACILITY

|gravity> ruby clop.rb -o tmp.out -n 3 --star_type star:MS:ZAMS
Command line option parser
Softening length: eps = 0.0
Time to stop integration: t = 10.0
Number of particles: N = 3
Shifts center of mass velocity: vcom =
3.04.05.0

Name of the outputfile: tmp.out
Star type: star_type = star:MS:ZAMS

Hey, now it works! And the star type is being assigned correctly. It seems that
adding a space somewhere triggers a protest, and the specific protest is that
whatever comes after the first space is not recognized.

I’m still in the dark. Let me look again at the error message. I can just add a
space somewhere, and I’m sure the program will complain again:

|gravity> ruby clop.rb -o tmp.out -n 3 --star_type star:MS :ZAMS
clop.rb:143:in ‘parse_command_line_options’: (RuntimeError)
option ":ZAMS" not recognized; try "-h" or "--help"

from clop.rb:115:in ‘initialize’
from clop.rb:267:in ‘new’
from clop.rb:267:in ‘parse_command_line’
from clop.rb:377

Hmmmm. option ":ZAMS" not recognized. AAH!! It is an option that is
not recognized. The command line parser receives the command line in a form
that is already cut up wherever there is white space. So only the star:MS is
considered to be the value of the option --star type and whatever comes next
would normally be a new option, starting with a hyphen, and more than that,
an option that can be recognized by the program. And :ZAMS is not even an
option.

9.7 The Answer

Bob: See: you got it under your own steam. I’m glad to see that combination
of the help facility and the error messages were enough to let you figure it out.

Alice: But I still have a question. There is something wrong with your long
help form, since the example you provided contained blank spaces!

Bob: Why don’t you check it again, to make sure.

Alice: I am sure. Here it is, this is how we got started:

9.7. THE ANSWER 109

|gravity> ruby clop.rb --help --star_type
--star_type: Star type [default: star: MS]

This options allows you to specify that a particle is a star, of a
certain type T, and possibly of subtypes t1, t2, ..., tk by specifying
--star_type "star: T: t1: t2: ...: tk". The ":" separators are allowed
to have blank spaces before and after them.

Examples: --star_type "star: MS"
--star_type "star : MS : ZAMS"
--star_type "star: giant: AGB"
--star_type "star:NS:pulsar:millisecond pulsar"

You see, a space between star and : and between . . .

Bob: Yes?

Alice: . . . the whole argument is enclosed between double quotes, making it
a single element in the array ARGV of command line options.

Bob: Yes!

Alice: Here we go again:

|gravity> ruby clop.rb -o tmp.out -n 3 --star_type "star : MS : ZAMS"
Command line option parser
Softening length: eps = 0.0
Time to stop integration: t = 10.0
Number of particles: N = 3
Shifts center of mass velocity: vcom =
3.04.05.0

Name of the outputfile: tmp.out
Star type: star_type = star : MS : ZAMS

That’s much better. You were right, I was wrong. I guess I was misled by the
vector example.

Bob: That is an exception, and it only works because the parser keeps parsing
until it encounters a closing square bracket]. With the --star type option
there would be no way to know when to stop parsing.

Alice: You could make the parser more fancy, by letting it continue to parse
until it encounters a new option, or the end of the string.

Bob: And how would it recognize a new option?

Alice: A leading hyphen would do the trick, wouldn’t it?

110 CHAPTER 9. A BUILT-IN TEST FACILITY

Bob: And how about a number like -1 ?

Alice: Ah yes, it is more complicated than I thought. That would look like an
option, but actually would be a legal value.

Bob: I think I could indeed do something, but it would not be so simple. For
example, insisting that an option would start with a letter, not a number, would
take care of the negative number problem. But there may be other problems
as well. It just seems simpler to insist on using double quotes. My attempt to
make life easier for vectors was perhaps already too much of a concession.

Chapter 10

The Clop Code

10.1 Test Drivers

Alice: I’m really happy with the command line option parser. We’ll use it from
now on. And your demonstration of the help facility was impressive, I must say.

Bob: You mean your demonstration.

Alice: I guess so; you were letting me struggle all by myself! But somehow
there was just enough information delivered to let me figure it out. And I must
say, I like the idea of having each class include its own test driver, at the end of
the file that holds the class. Your trick of including the line

if __FILE__ == $0

was a great idea. I think we should do that from now on for any file that contains
class definitions that will be used by other files.

Bob: Yes, I’m planning to do that.

Alice: Can you show me what you wrote, in clop.rb, as the test driver?

Bob: Here is the whole content of clop.rb, with the test driver at the end.
Note that the first four lines of the ‘here document’ are:

Description: Command line option parser, (c) 2004, Piet Hut & Jun Makino, ACS
Long description:
Test program for the class Clop (Command line option parser),
(c) 2004, Piet Hut and Jun Makino; see ACS at www.artcompsi.org

Alice: Who are those two people?

Bob: Oh, I just chose two pen names for us; as long as we are just building toy
models, we may as well use toy names for our products, don’t you think?

111

112 CHAPTER 10. THE CLOP CODE

Alice: But why a Dutch and a Japanese name?

Bob: Why not? I had to pick something.

Alice: I might have picked a Liechtensteiner and a Fijian, but I won’t argue
with your taste. Can you show me the code?

10.2 Code Listing

Bob: Here it is:

require "vector.rb"

class Clop_Option

attr_reader :shortname, :longname, :type,
:description, :longdescription, :printname, :defaultvalue

attr_accessor :valuestring

def initialize(def_str)
parse_option_definition(def_str)

end

def parse_option_definition(def_str)
while s = def_str.shift
break if parse_single_lines_done?(s)

end
while s = def_str.shift
break if s =~ /^\s*$/ and def_str[0] =~ /^\s*$/
@longdescription += s + "\n"

end
end

def parse_single_lines_done?(s)
if s !~ /\s*(\w.*?)\s*\:/
raise "\n option definition line has wrong format:\n==> #{s} <==\n"

end
name = $1
content = $’
case name
when /Short\s+(N|n)ame/
@shortname = content.split[0]

when /Long\s+(N|n)ame/
@longname = content.split[0]

when /Value\s+(T|t)ype/

10.2. CODE LISTING 113

@type = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = "false" if @type == "bool"

when /Default\s+(V|v)alue/
@defaultvalue = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")
@valuestring = @defaultvalue

when /Global\s+(V|v)ariable/
@globalname = content.split[0]

when /Print\s+(N|n)ame/
@printname = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Description/
@description = content.sub(/^\s+/,"").sub(/\s*(#.*|$)/,"")

when /Long\s+(D|d)escription/
@longdescription = ""
return true

else
raise "\n option definition line unrecognized:\n==> #{s} <==\n"

end
return false

end

def initialize_global_variable
eval("$#{@globalname} = eval_value") if @globalname

end

def eval_value
case @type
when "bool"
eval(@valuestring)

when "string"
@valuestring

when "int"
@valuestring.to_i

when "float"
@valuestring.to_f

when /^float\s*vector$/
@valuestring.gsub(/[\[,\]]/," ").split.map{|x| x.to_f}.to_v

else
raise "\n type \"#{@type}\" is not recognized"

end
end

def add_tabs(s, reference_size, n)
(1..n).each{|i| s += "\t" if reference_size < 8*i}
return s

end

114 CHAPTER 10. THE CLOP CODE

def to_s
if @type == nil
s = @description + "\n"

elsif @type == "bool"
if eval(@valuestring)
s = @description + "\n"

else
s = ""

end
else
s = @description
s = add_tabs(s, s.size, 4)
s += ": "
if @printname
s += @printname

else
s += @globalname

end
s += " = " unless @printname == ""
s += "\n " if @type =~ /^float\s*vector$/
s += "#{eval("$#{@globalname}")}\n"

end
return s

end

end

class Clop

def initialize(def_str, argv_array = nil)
parse_option_definitions(def_str)
if argv_array
parse_command_line_options(argv_array)

end
print_values

end

def parse_option_definitions(def_str)
a = def_str.split("\n")
@options=[]
while a[0]
if a[0] =~ /^\s*$/
a.shift

else
@options.push(Clop_Option.new(a))

end

10.2. CODE LISTING 115

end
end

def parse_command_line_options(argv_array)
while s = argv_array.shift
if s == "-h"
parse_help(argv_array, false)
exit

elsif s == "--help"
parse_help(argv_array, true)
exit

elsif i = find_option(s)
parse_option(i, s, argv_array)

else
raise "\n option \"#{s}\" not recognized; try \"-h\" or \"--help\"\n"

end
end
initialize_global_variables

end

def print_values
@options.each{|x| STDERR.print x.to_s}

end

def find_option(s)
i = nil
@options.each_index do |x|
i = x if s == @options[x].longname
if @options[x].shortname
i = x if s =~ Regexp.new(@options[x].shortname) and $‘ == ""

end
end
return i

end

def parse_option(i, s, argv_array)
if @options[i].type == "bool"
@options[i].valuestring = "true"
return

end
if s =~ /^-[^-]/ and (value = $’) =~ /\w/
@options[i].valuestring = value

else
unless @options[i].valuestring = argv_array.shift
raise "\n option \"#{s}\" requires a value, but no value given;\n" +

" option description: #{@options[i].description}\n"

116 CHAPTER 10. THE CLOP CODE

end
end
if @options[i].type =~ /^float\s*vector$/
while (@options[i].valuestring !~ /\]/)
@options[i].valuestring += " " + argv_array.shift

end
end

end

def initialize_global_variables
@options.each{|x| x.initialize_global_variable}
check_required_options

end

def check_required_options
options_missing = 0
@options.each do |x|
if x.valuestring == "none"
options_missing += 1
STDERR.print "option "
STDERR.print "\"#{x.shortname}\" or " if x.shortname
STDERR.print "\"#{x.longname}\" required. "
STDERR.print "Description:\n#{x.longdescription}\n"

end
end
if options_missing > 0
STDERR.print "Please provide the required command line option"
STDERR.print "s" if options_missing > 1
STDERR.print ".\n"
exit(1)

end
end

def parse_help(argv_array, long)
all = true
while s = argv_array.shift
if i = find_option(s)
all = false
print_help(long, i)

end
end
print_help(long) if all

end

def print_help(long, i = nil)
if i

10.2. CODE LISTING 117

STDERR.print help_string(@options[i], long)
else
@options.each{|x| STDERR.print help_string(x, long)}

end
end

def help_string(option, long_flag)
s = ""
if option.type
s += option_name_string(option)

end
if option.type or not long_flag
s += "#{option.description}"
s += default_value_string(option)
s += "\n"

end
if long_flag
s += "\n#{option.longdescription}\n"

end
return s

end

def option_name_string(option)
s = ""
if option.shortname
s += "#{option.shortname} "

end
s += "#{option.longname}"
s = option.add_tabs(s, s.size, 3)
s += ": "
return s

end

def default_value_string(option)
s = ""
if option.type and option.type != "bool"
reference_size = "#{option.description}".size + 2
s = option.add_tabs(s, reference_size, 4)
s += " [default: #{option.defaultvalue}]"

end
return s

end

end

def parse_command_line(def_str)

118 CHAPTER 10. THE CLOP CODE

Clop.new(def_str, ARGV)
end

if __FILE__ == $0

options_definition_string = <<-END

Description: Command line option parser
Long description:
Test program for the class Clop (Command line option parser),
(c) 2004, Piet Hut and Jun Makino; see ACS at www.artcompsi.org

This program appears at the end of the file "clop.rb" that contains
the definition of the Clop class.
By running the file (typing "ruby clop.rb"), you can check whether
it still behaves correctly. Maximum help is provided by the command
"ruby clop.rb --help".

Short name: -s
Long name: --softening_length
Value type: float # double/real/...
Default value: 0.0
Global variable: eps # any comment allowed here
Description: Softening length # and here too
Long description: # and even here
This option sets the softening length used to calculate the force
between two particles. The calculation scheme comforms to standard
Plummer softening, where rs2=r**2+eps**2 is used in place of r**2.

Short name: -t
Long name: --end_time
Value type: float
Default value: 10
Global variable: t_end
Print name: t
Description: Time to stop integration
Long description:
This option gives the time to stop integration.

Short name: -n
Long name: --number_of_particles
Value type: int
Default value: none

10.2. CODE LISTING 119

Global variable: n_particles
Print name: N
Description: Number of particles
Long description:
Number of particles in an N-body snapshot.

Short name: -x
Long name: --extra_diagnostics
Value type: bool
Global variable: xdiag
Description: Extra diagnostics
Long description:
The following extra diagnostics will be printed:

acceleration (for all integrators)
jerk (for the Hermite integrator)

Short name: -v
Long name: --shift_velocity
Value type: float vector # numbers in between [] brackets
Default value: [3, 4, 5]
Global variable: vcom
Description: Shifts center of mass velocity
Long description:
The center of mass of the N-body system will be shifted by this amount.
If the vector has fewer components than the dimensionality of the N-body
system, zeroes will be added to the vector.
If the vector has more components than the dimensionality of the N-body
system, the extra components will be disgarded.

Short name: -o
Long name: --output_file_name
Value type: string
Default value: none
Global variable: output_file_name
Print name: # no name, hence name suppressed
Description: Name of the outputfile
Long description:
Name of the snapshot output file.
The snapshot contains the mass, position, and velocity values
for all particles in an N-body system.

120 CHAPTER 10. THE CLOP CODE

Long name: --star_type # no short option given here
Value type: string
Default value: star: MS # parser cuts only at first ":"
Global variable: star_type
Description: Star type
Long description:
This options allows you to specify that a particle is a star, of a
certain type T, and possibly of subtypes t1, t2, ..., tk by specifying
--star_type "star: T: t1: t2: ...: tk". The ":" separators are allowed
to have blank spaces before and after them.

Examples: --star_type "star: MS"
--star_type "star : MS : ZAMS"
--star_type "star: giant: AGB"
--star_type "star:NS:pulsar:millisecond pulsar"

END

parse_command_line(options_definition_string)

end

Chapter 11

Literature References

[to be provided]

121

