
The Art of Computational Science

The Kali Code

vol. 4

The N-Body Problem:

From Leapfrog to Runge-Kutta

Piet Hut and Jun Makino

September 14, 2007

Contents

Preface 7

0.1 Acknowledgments . 7

1 An N-Body Code 9

1.1 First Attempt . 9

1.2 Driver . 14

1.3 Input . 15

2 N-Body Integrators 19

2.1 Inspecting the Leapfrog . 19

2.2 Acceleration . 20

2.3 Newtonian Gravity . 22

2.4 A Matter of Taste . 24

2.5 Potential Energy . 25

2.6 Local Arrays . 26

2.7 Energy Diagnostics . 27

3 Testing the N-body Code 29

3.1 A 2-Body System . 29

3.2 A Bug . 31

3.3 The Simplest Case . 32

3.4 A Variation . 33

3.5 Another Variation . 35

3.6 Two Variations . 36

3.7 A Single Time Step . 37

3

4 CONTENTS

4 Debugging the N-body Code 39

4.1 Forward Euler . 39

4.2 Nothing Wrong . 40

4.3 Two Possibilities . 42

4.4 Back to Square One . 43

4.5 A Warning Light . 44

4.6 Hindsight . 45

4.7 Bug Fixed . 47

4.8 One More Check . 48

5 A Single-Links Version 51

5.1 A Figure-8 Triple . 51

5.2 Switching Places . 52

5.3 Single Links in Body . 53

5.4 Single Links in Nbody . 55

5.5 The DRY Principle . 56

5.6 Simplifying Further . 57

5.7 Finishing the Revision . 59

5.8 Two Tests . 60

6 Returning to Simplicity 63

6.1 Extra Body Variables . 63

6.2 Alternatives . 64

6.3 Forward . 64

6.4 Clean Code . 65

6.5 Sending a String . 66

6.6 Wishful Thinking . 68

6.7 Implementation . 68

6.8 Indirect String Sending . 70

6.9 The Same, Yet Different . 72

6.10 Testing . 72

7 A Final Version 77

CONTENTS 5

7.1 Clarity . 77

7.2 Brevity . 78

7.3 Correctness . 80

7.4 More Information . 81

7.5 An Initial Snapshot Output . 83

7.6 A New Driver . 84

7.7 A Final Test . 85

8 An Eight-Body System 87

8.1 Setting Up a Cube . 87

8.2 Letting Go . 88

8.3 Passing Through . 91

8.4 Convergence . 93

9 Softening 97

9.1 Close Encounters . 97

9.2 Fuzzy-Point Particles . 98

9.3 A New Driver . 99

9.4 A Code with Softening . 100

9.5 Details . 104

10 Cold Collapse with Softening 107

10.1 Check . 107

10.2 Large Softening . 108

10.3 Even larger softening . 109

10.4 Small Softening . 111

10.5 Central Collapse . 113

11 Literature References 115

6 CONTENTS

Preface

We continue the dialogue in the previous two volumes, where Alice and Bob
developed a gravitational 2-body code, containing a wide choice of integrators.
In the current volume, they modify their code, to grow it into a true N-body
version. They try out various choices of implementation, and test each version
using the recently discovered solution for the 3-body problem, where all three
particles follow each other in a figure eight. Toward the end of the book, they
simulate a cold collapse of eight particles, first without softening, then with
softening.

0.1 Acknowledgments

Besides thanking our home institutes, the Institute for Advanced Study in
Princeton and the University of Tokyo, we want to convey our special gratitude
to the Yukawa Institute of Theoretical Physics in Kyoto, where this volume was
written, during a visit in May 2004, made possible by the kind invitations to
both of us by Professor Masao Ninomiya.

We thank Michele Trenti and Jason Underdown for their comments on the
manuscript.

Piet Hut and Jun Makino

Kyoto, July 2004

7

8 CONTENTS

Chapter 1

An N-Body Code

1.1 First Attempt

Bob: Hi, Alice! How are things?

Alice: I’m fine. But I can see from your face that you can’t wait to show me
something. Did you do some more coding?

Bob: Well, yes, some.

Alice: Don’t tell me you wrote a whole N-body implementation?

Bob: Well, yes.

Alice: Now that’s impressive! Even though you told me it wasn’t going to be
that much work.

Bob: It was more work than I thought, I admit, but not terribly much more
work.

Alice: I guess that ‘more’ is a relative concept. Can you show me what you
did?

Bob: My pleasure. Here is the whole listing. I have called it rknbody1.rb, rk
for Runge-Kutta, and 1 because it is my first attempt, and I’m sure we’ll come
up with some modifications and improvements.

require "vector.rb"

class Body

attr_accessor :mass, :pos, :vel, :nb

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])

9

10 CHAPTER 1. AN N-BODY CODE

@mass, @pos, @vel = mass, pos, vel
end

def acc
a = @pos*0 # null vector of the correct length
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
r2 = r*r
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)

end
end
a

end

def ekin # kinetic energy
0.5*(@vel*@vel)

end

def epot # potential energy
p = 0
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r)

end
end
p

end

def to_s
" mass = " + @mass.to_s + "\n" +
" pos = " + @pos.join(", ") + "\n" +
" vel = " + @vel.join(", ") + "\n"

end

def pp # pretty print
print to_s

end

def simple_print
printf("%24.16e\n", @mass)
@pos.each{|x| printf("%24.16e", x)}; print "\n"
@vel.each{|x| printf("%24.16e", x)}; print "\n"

end

1.1. FIRST ATTEMPT 11

def simple_read
@mass = gets.to_f
@pos = gets.split.map{|x| x.to_f}.to_v
@vel = gets.split.map{|x| x.to_f}.to_v

end

end

class Nbody

attr_accessor :time, :body

def initialize(n=0, time = 0)
@time = time
@body = []
for i in 0...n
@body[i] = Body.new
@body[i].nb = self

end
end

def evolve(integration_method, dt, dt_dia, dt_out, dt_end)
nsteps = 0
e_init
write_diagnostics(nsteps)

t_dia = dt_dia - 0.5*dt
t_out = dt_out - 0.5*dt
t_end = dt_end - 0.5*dt

while @time < t_end
send(integration_method,dt)
@time += dt
nsteps += 1
if @time >= t_dia
write_diagnostics(nsteps)
t_dia += dt_dia

end
if @time >= t_out
simple_print
t_out += dt_out

end
end

end

12 CHAPTER 1. AN N-BODY CODE

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

def leapfrog(dt)
@body.each{|b| b.vel += b.acc*0.5*dt}
@body.each{|b| b.pos += b.vel*dt}
@body.each{|b| b.vel += b.acc*0.5*dt}

end

def rk2(dt)
old_pos = []
@body.each_index{|i| old_pos[i] = @body[i].pos}
half_vel = []
@body.each_index{|i| half_vel[i] = @body[i].vel + @body[i].acc*0.5*dt}
@body.each{|b| b.pos += b.vel*0.5*dt}
@body.each{|b| b.vel += b.acc*dt}
@body.each_index{|i| @body[i].pos = old_pos[i] + half_vel[i]*dt}

end

def rk4(dt)
old_pos = []
@body.each_index{|i| old_pos[i] = @body[i].pos}
a0 = []
@body.each_index{|i| a0[i] = @body[i].acc}
@body.each_index{|i|
@body[i].pos = old_pos[i] + @body[i].vel*0.5*dt + a0[i]*0.125*dt*dt}

a1 = []
@body.each_index{|i| a1[i] = @body[i].acc}
@body.each_index{|i|
@body[i].pos = old_pos[i] + @body[i].vel*dt + a1[i]*0.5*dt*dt}

a2 = []
@body.each_index{|i| a2[i] = @body[i].acc}
@body.each_index{|i|
@body[i].pos = old_pos[i] + @body[i].vel*dt +

(a0[i]+a1[i]*2)*(1/6.0)*dt*dt}
@body.each_index{|i| @body[i].vel += (a0[i]+a1[i]*4+a2[i])*(1/6.0)*dt}

end

def ekin # kinetic energy
e = 0
@body.each{|b| e += b.ekin}
e

1.1. FIRST ATTEMPT 13

end

def epot # potential energy
e = 0
@body.each{|b| e += b.epot}
e/2 # pairwise potentials were counted twice

end

def e_init # initial total energy
@e0 = ekin + epot

end

def write_diagnostics(nsteps)
etot = ekin + epot
STDERR.print <<END

at time t = #{sprintf("%g", time)}, after #{nsteps} steps :
E_kin = #{sprintf("%.3g", ekin)} ,\
E_pot = #{sprintf("%.3g", epot)} ,\
E_tot = #{sprintf("%.3g", etot)}

E_tot - E_init = #{sprintf("%.3g", etot - @e0)}
(E_tot - E_init) / E_init = #{sprintf("%.3g", (etot - @e0)/@e0)}

END
end

def pp # pretty print
print " N = ", @body.size, "\n"
print " time = ", @time, "\n"
@body.each{|b| b.pp}

end

def simple_print
print @body.size, "\n"
printf("%24.16e\n", @time)
@body.each{|b| b.simple_print}

end

def simple_read
n = gets.to_i
@time = gets.to_f
for i in 0...n
@body[i] = Body.new
@body[i].nb = self
@body[i].simple_read

end
end

14 CHAPTER 1. AN N-BODY CODE

end

1.2 Driver

Alice: I recognize the overall structure. Can you show me the driver program,
to give me an idea where to start?

Bob: Here it is, rknbody1 driver.rb

require "rknbody1.rb"

include Math

dt = 0.0001 # time step
dt_dia = 10 # diagnostics printing interval
dt_out = 10 # output interval
dt_end = 10 # duration of the integration
##method = "forward" # integration method
##method = "leapfrog" # integration method
##method = "rk2" # integration method
method = "rk4" # integration method

STDERR.print "dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"method = ", method, "\n"

nb = Nbody.new
nb.simple_read
nb.evolve(method, dt, dt_dia, dt_out, dt_end)

Alice: The last three lines are almost exactly the same as the last three lines
in the driver for our pseudo-one-body integrator:

b = Body.new
b.simple_read
b.evolve(method, dt, dt_dia, dt_out, dt_end)

apart for three n’s and one N. The rest is exactly the same, with of course an
extra n in the file name that is being required on top. A very minimal change.

1.3. INPUT 15

Bob: Yes, I preferred to stay as close as I could to our initial 2-body relative
coordinates integrator.

Alice: I’m very curious to see how you integrated the combined equations of
motion for an arbitrary number of particles, but let me follow the logic of the
driver first, to feel my way around in the program flow. You start by creating a
whole N-body system, and then reading in the data. And besides the old class
Body, you have introduced a class Nbody, to contain the data for that whole
system.

Bob: Yes. The initializer has two parameters, as you can see:

def initialize(n=0, time = 0)
@time = time
@body = []
for i in 0...n
@body[i] = Body.new
@body[i].nb = self

end
end

By default an N-body system is created empty, containing 0 particles, at starting
at time 0, but if you like, you can create it with several particles right from the
start. In our case, the driver creates an empty default system, leaving it up to
the simple read input function to create the necessary particle slots, depending
on how many are needed to store the input data.

Alice: Since all particles share the same time step in this code, it makes sense to
make the shared simulation time an instance variable @time for the Nbody class.
And @body must be an array of Body instances, since if you specify n particles to
be present, you fill the array by creating n new bodies, from @body[0] through
@body[n-1]. But what about the for loop? Ah, yes, I remember now: in Ruby
0...n means that you exclude n, while 0..n does indeed include n.

Bob: A handy short notation, but like every short notation, potentially con-
fusing if you’re not yet used to it.

1.3 Input

Alice: But what about this line

@body[i].nb = self

Bob: I have given the Body class an extra instance variable @nb, which for
each body instance will contain the address of the parent, an instance of the

16 CHAPTER 1. AN N-BODY CODE

Nbody class. In that way, each Body daughter is doubly linked to her Nbody
parent. The parent can call the appropriate daughter, by selecting her from
the @body[] array, and the daughter can call the parent directly through her
own @nb variable. Remember that the expression self gives the address of the
Nbody instance itself, which then gets handed down to each body.

Alice: Hmm. In general, I am quite wary of doubly linked list. It is all too
easy to change the link in one direction and to forget to change the link in the
other direction, or to change it in the wrong way.

Bob: Typical one-off errors that often happen in C and C++ are less likely
to occur in Ruby, because so much of the bookkeeping is handled behind the
scenes, as long as you don’t confuse 0...n and 0..n. But I see your point, and
perhaps we should change that, later on. For now, let’s just go through the
code, and then we can decide whether it will be easy to unlink the backward
pointers from daughter to parent.

My motivation to provide backward links was to give each daughter the possi-
bility to communicate with her siblings. If one daughter wants to compute her
acceleration, she would need to find the positions of all other daughters, and
the simplest way to do that, I thought, was to give her a way to ask her parents
how to find all the others.

Alice: Fine for now. In the simple read program you also provide those back-
ward links for each particle, after which you invoke the simple read method
for that particle:

def simple_read
@mass = gets.to_f
@pos = gets.split.map{|x| x.to_f}.to_v
@vel = gets.split.map{|x| x.to_f}.to_v

end

The format you have chosen is to start with the number of particles and the
time, followed by the data for each particle.

Bob: Yes. It seemed safer to tell the input routine how many particles to
expect, rather than to let it read in everything to the end of the file. In some
cases you might want to store more than one snapshot, for example, in one file.

In fact, my code normally will output a series of snapshots, one after each dt out
interval, just as we did it for the single pseudo-body case. This will make it
possible to restart a run: you can later sequentially read in a number of those
snapshots, each with a nb.simple read statement in the driver, selecting the
proper one by checking the time variable specified.

For example, when you invoke the code with:

dt_out = 5

1.3. INPUT 17

dt_end = 10
nb = Nbody.new
nb.simple_read
nb.evolve(method, dt, dt_dia, dt_out, dt_end)

you can continue the run from the output of this first run, by reading in that
output and discarding the first snapshot:

nb = Nbody.new
nb.simple_read
nb.simple_read
nb.evolve(method, dt, dt_dia, dt_out, dt_end)

Alternatively, and more safely, you could check for the time:

nb = Nbody.new
nb.simple_read
while (nb.time < 10)
nb.simple_read

end

It would be better to use a slightly smaller value than 10, if you want to pick
up the snapshot corresponding to nb.time = 10, since it is quite possible that
it will have been output at nb.time = 9.99999 or so. Also, you would want
to check whether the snapshot time is not too far beyond nb.time = 10. But
those are details.

18 CHAPTER 1. AN N-BODY CODE

Chapter 2

N-Body Integrators

2.1 Inspecting the Leapfrog

Alice: Yes, I get the idea, and that all makes a lot of sense. And now that we
understand how the data get read in, let’s see what will happen with them.

In rknbody1.rb, I see that you have shifted all the integration methods from
the Body to the Nbody class, as well as the evolve function that calls them.

Bob: The evolve function orchestrates the whole integration process, and it
is called by the driver, which only knows about the one Nbody instance that it
has created. So it is logical to put the evolve method inside the Nbody class.
And since evolve calls the various integration methods, it also seemed logical
to have leapfrog, rk2, and so on, reside there.

Alice: I could imagine an alternative, where each particle is given the freedom
to use its own integration method, in which case you would want to shift those
methods back into the Body class, but that would make more sense when you
use an individual time step algorithm, where each particle has its own time step
length. For the simple shared time step case that we are starting with, your
choice is surely the best.

Bob: I could imagine many things, but coding them takes more time than
imagining them! I do like the idea of relatively autonomous particles, integrating
themselves as they want, with stars in denser regions having perhaps more
specialized integrators, but not today.

Alice: Looking at evolve, I see almost exactly the same function that we
used for the two-body problem. The only difference is that now the time is an
instance variable for the Nbody class, which means that we don’t have to pass
the time as an argument to the write diagnostics method.

Bob: Yes. If I would have left the time as a normal variable that would be

19

20 CHAPTER 2. N-BODY INTEGRATORS

passed around, the evolve method would have been exactly the same. A nice
example of recycling code: whether you are dealing with one pseudo particle or
with N particles, the top level instructions are basically the same.

Alice: But of course the actual work is different, and in our case more com-
plicated. The forward Euler implementation is a bit hard to recognize, at first
sight. Let me start with the new leapfrog method, which looks more familiar.
The two-body version was:

def leapfrog(dt)
@vel += acc*0.5*dt
@pos += @vel*dt
@vel += acc*0.5*dt

end

while now we have

def leapfrog(dt)
@body.each{|b| b.vel += b.acc*0.5*dt}
@body.each{|b| b.pos += b.vel*dt}
@body.each{|b| b.vel += b.acc*0.5*dt}

end

This is easy to understand: for each body, basically the same actions are taken
as was the case for our single pseudo-body, containing the relative position
information for the two-body case.

Bob: The difference being that, invisibly at this level, the Body method acc,
which computes the acceleration, has to ask all other particles for their position.

2.2 Acceleration

Alice: Indeed, acc has grown quite a bit bigger. In the two-body case, we
started with

def acc
r2 = @pos*@pos
r3 = r2*sqrt(r2)
@pos*(-@mass/r3)

end

and your new N-body version reads:

2.2. ACCELERATION 21

def acc
a = @pos*0 # null vector of the correct length
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
r2 = r*r
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)

end
end
a

end

Bob: The main difference is the loop that our body has to execute over all
other bodies. It is here that I am using my backpointer @nb that links back
to the parent Nbody instance. In that way, the array of bodies becomes visible
for our particular body as @nb.body, and it is this array over which we iterate
using the familiar each construct.

Alice: And you are excluding the body itself from the loop, to avoid getting an
infinitely large self interaction, through the line:

unless b == self

But what exactly are you comparing? I am used to the C notation where
== compares two numbers. In Ruby too, when both numbers are equal, the
statement returns true, and if not, it returns false. But what are the two
numbers being compared here?

Bob: In Ruby, each object, that is each instance of any class, has a unique id
number, a machine-defined number that is guaranteed to be different for two
different objects. We don’t have to know anything about what that number is,
or how it is represented. All we need to know is that we can rely on it being
different for two different particles.

Alice: But this unique identification number has a different status from that
of normal numbers, such as integers or floating point numbers, I presume. If I
write a == b for two variables, Ruby compares the values of these two variables,
not their id numbers. If Ruby would always use the == operator to compare
object id numbers, then a == b would always result in false, whenever the two
variables would be different, whether they have the same values or not.

Bob: Yes, you are right. I had not thought about that. In the case of numbers,
or strings for that matter, the == operator must be overloaded so as to override
the default behavior, which is comparing id numbers. Interesting! I had just
used this expression, since it seemed reasonable, and does the right thing. But
now that you ask me, yes, there must be different types of overloading going

22 CHAPTER 2. N-BODY INTEGRATORS

on for different classes. In other words, many different classes must define their
own == method.

Alice: The good thing about Ruby is that everything happens so naturally, in
such a transparent way. But a consequence is that you often don’t appreciate
all that is going on behind the scenes. Coming back to the statement above,
this line is filtering out particle pair combinations where both particles have the
same identity.

Bob: Indeed. particles are not allowed to interact with themselves. For all
other particle pairs, we compute the acceleration in a similar way as before.
The main difference is that the vector connecting the two bodies is not given,
as was the case for the two-body problem, where there was only one relative
vector. Here we compute the vector pointing from the calling particle to the
called particle first, as follows:

r = b.pos - @pos

Alice: And the acceleration seems to have the same mass dependence in both
cases, the two-body and the N-body case, but here appearances deceive: in the
two-body case we had an equation of moment for our pseudo particle, while
here we are now dealing with real particles.

Bob: Yes, I thought about that carefully. Actually, the tricky thing is to get
the two-body case right, where it is easy to make a mistake, as we saw when I
was a bit too quick in coding up the diagnostics there. For the N-body case, in
contrast, it is all a piece of cake. The line

a += r*(b.mass/r3)

Directly implements Newton’s law of gravity.

2.3 Newtonian Gravity

Alice: When we present this to our students, it would be good to summarize
the connection specifically. To wit: the expression for the acceleration felt by
particle i is given by summing together the Newtonian gravitational attraction of
all other particles j, where both i and j take on values from 1 up to and including
N, according to the text books. In our case, of course, we label particles with
numbers starting from 0 and running up to and including N-1, since that is
Ruby’s default way of numbering arrays. Let’s write the equations accordingly:

d2

dt2
ri = G

N−1∑

j=0
j 6=i

Mj
rj − ri

|rj − ri|3
(2.1)

2.3. NEWTONIAN GRAVITY 23

Here Mj and rj are the mass and position vector of particle j, and G is the
gravitational constant.

When I write this equation on a black board in front of a class, there is always
someone who asks me where the power of 3 in the denominator comes from,
given that Newtonian gravity is an inverse square law, and therefore should be
proportional to the power 2 of the distance, in the denominator. To bring out
the inverse square nature of gravity, I then write rji = rj − ri, with rji = |rji|,
after which I define the unit vector r̂ji = rji/rji. This allows the above equation
to be written as:

ai = G
N−1∑

j=0
j 6=i

Mj

r2
ji

r̂ji (2.2)

with the expected power of 2 in the denominator.

Finally, I note that the summation excludes self-interactions: every particle
feels the forces of the other N − 1 particles, but not its own force, which, as we
already mentioned, would be infinitely large in case of a point mass.

Bob: That’s a nicely crisp summary.

Alice: What is really nice in our Ruby implementation, is that we never have to
introduce the counters i and j that are so ubiquitous in any N-body code I have
ever seen. Just as we could dispense with the k variable for the components of
a vector, we can avoid the other two counters by asking arrays and vectors to
just loop over themselves.

And this is one of the features that makes Ruby eminently suited for prototyping
and development work in general. Whether Ruby will be used eventually for an
industrial-strength production-type code, that remains to be seen.

Bob: If so, we’ll have to do some very serious speed-up. My impression so far
has been that Ruby is at least a couple orders of magnitude slower than the
equivalent C or Fortran implementation.

Alice: In addition, our leapfrog calculates the acceleration twice on the Nbody
level, and for each particle pair, the relative acceleration is also computed twice.

Bob: If we had been a little more clever, we would have saved a factor of four
there too. I bet we can speed up our code by a stunning factor of a thousand
or so, if we pull all stops!

Alice: Maybe, we’ll see in due time. For now, I think we are being clever, by
not worrying at all about optimization. The point is to bring out the underlying
structure, which is complex enough all by itself. Once we really see that clearly,
we can start optimizing while avoiding confusing clutter.

24 CHAPTER 2. N-BODY INTEGRATORS

2.4 A Matter of Taste

Bob: Note, by the way, one more difference between the 2-body and N-body
case: in the latter case we have to accumulate the results, through the summa-
tion you just showed. Before traversing the loop over particles, we have to clear
the vector where the acceleration a on our particle is being stored. I experi-
mented with various ways to do so, but the most compact notation I found was
what I wrote on the top of the acc method:

a = @pos*0 # null vector of the correct length

Isn’t that a nifty and compact expression?

Alice: I see. In order to provide a null vector for the acceleration with the right
number of components, you use the position as a template, and after copying
the position, you fill all entries with zeroes. I’m glad you put a comment line
in, since otherwise the meaning wouldn’t have been so obvious at first reading.

Hmmm. While I agree that it is compact, perhaps a longer expression would
have been a bit more clear. How about

a = ([0]*@pos.size).to_v # null vector of the correct length

Bob: Yes, that would bring out the fact that you use the position vector only
because you want to extract its size, and not for any other reason. And you
explicitly show how you start with an array of length 1, filled with a single 0,
and then extend that array to contain @pos.size components. But then you
still have to convert it into a vector. You see, I avoided the last step by starting
with a copy of @pos, which was already a vector.

Alice: Yes, your construction was clever, but I’m still wondering about the
unsuspecting reader, who has to make sense of your cleverness. In fact, in my
more lengthy alternative, notice that I left your comment line in, since upon
first reading, even my longer line would still not be fully clear, I’m afraid.

If I really wanted to be self-explanatory, I would write:

vector_size = @pos.size
a = ([0]*vector_size).to_v

That way I would express the fact that a is a vector, that it needs to be of the
right size, that it should contain all zeroes, and that it should be converted to
a proper vector at the end of the day.

Bob: A long day, if you ask me. I would never have guessed your explanation
completely just from looking at that piece of code, so I would insert a comment
there as well – which makes your alternative longer than mine. I prefer to stick
with my

2.5. POTENTIAL ENERGY 25

a = @pos*0 # null vector of the correct length

Alice: Fine with me. This is really a matter of taste.

2.5 Potential Energy

Bob: While we’re at it, let me walk you through the rest of the Body class
definition. The potential is constructed in a very similar way as the acceleration,
by doing a body walk through the whole system. In the two-body case, we
started with:

def epot # potential energy
-@mass/sqrt(@pos*@pos) # per unit of reduced mass

end

My new N-body version reads:

def epot # potential energy
p = 0
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r)

end
end
p

end

The difference with respect to acc is that the potential energy includes a product
of the mass of the calling particle i and the mass of the called particle j:

Epot,i = −G
N∑

j=1
j 6=i

MiMj

|rj − ri|
(2.3)

Alice: Yes, of course, and that is something that is easy to leave out. If I
would have written the potential method epot, using the acceleration method
acc as a template, I might have forgotten to include the factor @mass for the
calling particle. And such a bug might be hard to find at first, since we tend to
test a code with simple values for the masses, often just unity. In general, it is
important to run tests with masses that are not all unity.

26 CHAPTER 2. N-BODY INTEGRATORS

2.6 Local Arrays

Bob: The rest of the input and output routines are unchanged, compared to
our earlier two-body code. Let’s return to the Nbody class. You mentioned that
the leapfrog method was almost the same as before. Unfortunately, that is the
only one of our four integration methods that remained quite simple to read.
The other three have become a bit more crowded, I’m afraid.

Alice: I’ll start with the forward Euler case again. In forward, you have
replaced the previous form

def forward(dt)
old_acc = acc
@pos += @vel*dt
@vel += old_acc*dt

end

by:

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

Bob: This is a tricky point. Before we stored the original acceleration in
the vector old acc, which was a single physical vector, containing the relative
acceleration between our two particles. In the N-dimensional analogue that we
have here, we need to store N initial acceleration vectors, one for each particle.

The most straightforward solution would be to define a new instance variable
for the Body class, @old acc, but I rejected that solution. As you will be happy
to hear, I wanted to keep the code modular, without letting the Body class know
what the Nbody class might decide to be good algorithms. The alternative would
be to saddle the poor Body class simultaneously with all the possible variables
that would be needed in all the algorithms you could choose from.

Alice: I indeed applaud your desire for modularity. However, in this particular
case I’m not so sure whether we should insist on such a strong separation. Let’s
get back to that in a moment.

Bob: Since I wanted to keep the auxiliary variables, such as old acc, local, I
could not loop over them using the @body.each construct used in leapfrog.
Of course, you can loop over old acc alone easily enough, in a old acc.each
construction, but that would in turn not allow the @body array to be traversed.

2.7. ENERGY DIAGNOSTICS 27

The only solution I saw was to introduce an index i – yes, I know, we just cele-
brated the lack of indices i and j in Ruby, and I’m not happy with it, but at least
for now, it works. In that way, I could use the Array method @body.each index,
which does what it says it does, namely traversing the @body array. Now since
old acc and @body have the same number of components, equal to the number
of particles N, this one construct can simultaneously traverse both arrays. The
i index is the glue that connects both traversals, keeping them in lock step.

In addition, I had to introduce the array old acc, which I did here in the first
line of forward. The third line did not contain any local variables, so there at
least I could avoid the use of an i variable.

Alice: That is a reasonable solution. You are trading modularity for readability.
And while I’m sure there are several alternatives, let’s first complete our guided
tour here. What is left to visit is the energy diagnostics part of the code.

2.7 Energy Diagnostics

Bob: That turned out to be really simple. For each Body method ekin there is
a corresponding Nbody method ekin that gathers all the individual results, and
sums them up to find the total kinetic energy. Here is the Body version:

def ekin # kinetic energy
0.5*(@vel*@vel)

end

and here is the Nbody version:

def ekin # kinetic energy
e = 0
@body.each{|b| e += b.ekin}
e

end

In order to sum it all up, I introduce a variable e, initialize it to zero, add the
various contributions, and then I list e again, in the final line. In that way, the
method ekin returns the correct value e.

Alice: Just curious: couldn’t you have left out the last line, with the single e?
At the last time that the statement in the previous line will be executed, some
particle’s kinetic energy will be added to e, so e will be what is going to be
returned anyway, no?

Bob: I’m not sure. You’re talking about the last action in a loop, and then
control is being returned to the each method. But it is easy enough to find out
whether that would work. Let’s call irb for help:

28 CHAPTER 2. N-BODY INTEGRATORS

|gravity> irb
irb(main):001:0> a = [1, 2, 3]
=> [1, 2, 3]
irb(main):002:0> e = 2
=> 2
irb(main):003:0> a.each{|b| e += b}
=> [0, 1, 2, 3]
irb(main):004:0> e
=> 8

Alice: I see. You were correct in worrying about the control coming back to
the array. Actually, that makes sense: it was the array a in this example that
called the each method. And frankly, even if it would have worked, it might
have been better to leave the final e line in there, at the end of your ekin, for
clarity.

Bob: Well, I wasn’t sure either. Learn something new everyday. And it is
certainly nice to work with an interpreted, rather than a compiled language:
this type of checking you can do extremely quickly and easily.

Alice: The story for the potential energy must be similar. For each particle
we have a method epot associated with the Body class, as you just showed us
already, and a method with the same name, but associated with the Nbody class:

def epot # potential energy
e = 0
@body.each{|b| e += b.epot}
e/2 # pairwise potentials were counted twice

end

Just like for the kinetic energy, the Nbody method epot gathers all the contribu-
tions to the potential energy of the various bodies – with one twist: you are now
dividing by a factor two. Ah, of course: for each particle pair, the contribution
is counted once when the one particle computes its potential energy, and once
again when the other particle computes its potential energy. Therefore, every
particle pair contribution gets counted twice, and at the end we have to correct
for that.

Bob: Yes, indeed. And yes, I had left that factor of two out, the first time
I ran the program. Diagnostics are wonderful; they sure keep you honest: of
course I could get no good energy conservation no matter what I tried, until
I realized what was going wrong. I found it by computing the initial kinetic
energy and potential energy for a two-body system, which was easy enough to
do on paper. Comparing it with the numerical result, it was immediately clear
that the potential energy was counted twice.

Chapter 3

Testing the N-body Code

3.1 A 2-Body System

Alice: I would like to see the N-body program running for a 2-body system
first, just to check whether we really get the same results.

Bob: That’s a good idea. I have tested it so far with a 3-body system, with
some randomly chosen initial conditions, but I agree that it would be good to
test the code from the ground up. Shall we try to reproduce the same Kepler
orbit that we integrated using our euler.in initial conditions? They were

1
1 0
0 0.5

Alice: Yes, but now we have to be careful how we interpret this mass value of
1 that we used before. Remember how we introduced the two-body problem,
using the relative position r between the two pairs? The equation of motion for
r was

d2

dt2
r = −G

M1 + M2

r3
r (3.1)

So all we know is that the sum of the masses is unity. We can divide this over
the two particles in any way we like. We could take them to be of equal mass,
in which case M1 = M2 = 1

2 . However, I would prefer unequal masses, just to
avoid degenerate situations where our test may fail to uncover some subtle bug.

Bob: Good idea. We saw already how using a mass of unity could fail to show
an error in mass assignment. The more asymmetric and non-default our choice
is, the better. It would be good, though, to calculate the orbits in the center-
of-mass frame, otherwise the results are more difficult to interpret, when the

29

30 CHAPTER 3. TESTING THE N-BODY CODE

particles start drifting off, away from the origin. How about this choice? I’ll
put it in a file test1.in:

2
0
0.8
0.2 0
0 0.1
0.2
-0.8 0
0 -0.4

I will first redo the fourth-order Runge-Kutta run for a time step of 10−4, using
our previous two-body code, integrator driver2h.rb:

require "rkbody.rb"

include Math

dt = 0.0001 # time step
dt_dia = 10 # diagnostics printing interval
dt_out = 10 # output interval
dt_end = 10 # duration of the integration
method = "rk4" # integration method

STDERR.print "dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"method = ", method, "\n"

b = Body.new
b.simple_read
b.evolve(method, dt, dt_dia, dt_out, dt_end)

Here is the result:

|gravity> ruby integrator_driver2h.rb < euler.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4

3.2. A BUG 31

at time t = 0, after 0 steps :
E_kin = 0.125 , E_pot = -1 , E_tot = -0.875

E_tot - E_init = 0
(E_tot - E_init) / E_init =-0

at time t = 10, after 100000 steps :
E_kin = 0.554 , E_pot = -1.43 , E_tot = -0.875

E_tot - E_init = -8.33e-14
(E_tot - E_init) / E_init =9.52e-14
1.0000000000000000e+00
5.9961755488723312e-01 -3.6063458344261029e-01
1.0308069102701605e+00 2.1389530419780176e-01

3.2 A Bug

Now let’s see what my new N-body code, rknbody1a driver.rb, will do. Here
is the code:

require "rknbody1.rb"

include Math

dt = 0.0001 # time step
dt_dia = 10 # diagnostics printing interval
dt_out = 10 # output interval
dt_end = 10 # duration of the integration
method = "rk4" # integration method

STDERR.print "dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"method = ", method, "\n"

nb = Nbody.new
nb.simple_read
nb.evolve(method, dt, dt_dia, dt_out, dt_end)

And here is what it does:

|gravity> ruby rknbody1a_driver.rb < test1.in
dt = 0.0001
dt_dia = 10

32 CHAPTER 3. TESTING THE N-BODY CODE

dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.085 , E_pot = -0.16 , E_tot = -0.075

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.377 , E_pot = -0.229 , E_tot = 0.148

E_tot - E_init = 0.223
(E_tot - E_init) / E_init = -2.98

2
9.9999999999900329e+00
8.0000000000000004e-01
1.1992351097726084e-01 -7.2126916688572407e-02
2.0616138205436191e-01 4.2779060839347856e-02
2.0000000000000001e-01
-4.7969404390904336e-01 2.8850766675428963e-01
-8.2464552821744763e-01 -1.7111624335739142e-01

Alice: Huh? An energy conservation error of order unity? And our old code
was conserving energy almost on machine accuracy! Are you sure you have
tested your code?

Bob: Yes, I’m sure, I can show you. And yes, I’m deeply puzzled now.

3.3 The Simplest Case

Alice: Let’s try a very simple situation, where we absolutely know what the
outcome will be, in explicit form. Let us take a circular binary star with equal
masses, just to see what will go wrong there. Perhaps that will give us a hint.
We can give both stars a mass m1 = m2 = 1, and start with an initial distance
of ri,j = 1. This gives us an initial potential energy of −m1m2/ri,j = −1, since
we are working with G = 1. Because of the virial theorem, we know that the
average kinetic energy has to be −1/2 times that of the average potential energy.
In a circular binary, both kinetic and potential energies remain constant, and
equal to their initial values, and therefore the total initial kinetic energy is 1/2,
in the center-of-mass frame. This means that we need to give each star a kinetic
energy of 1/4. Since each star has a mass of 1, the velocity v of each star should
be 1/

√
(2), in order to make Ekin = 1

2mv2 = 1/4 for that star.

Bob: Here we go. I will call the initial file for the circular binary test2.in.

2

3.4. A VARIATION 33

0
1
0.5 0
0 7.071067811865475e-01
1
-0.5 0
0 -7.071067811865475e-01

I’ll use the same parameters for the fourth-order Runge-Kutta integrator, in my
N-body code:

|gravity> ruby rknbody1a_driver.rb < test2.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.5 , E_pot = -1 , E_tot = -0.5

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.5 , E_pot = -1 , E_tot = -0.5

E_tot - E_init = -6.22e-15
(E_tot - E_init) / E_init = 1.24e-14

2
9.9999999999900329e+00
1.0000000000000000e+00
-2.4843310663498000e-03 4.9999382806106440e-01
-7.0709805274678161e-01 -3.5133746874538431e-03
1.0000000000000000e+00
2.4843310663498000e-03 -4.9999382806106440e-01
7.0709805274678161e-01 3.5133746874538431e-03

3.4 A Variation

Alice: Congratulations! You do have a working integrator, at least for a circular
equal-mass binary. But of course the question remains: what went wrong with
the non-circular non-equal-mass binary?

Bob: I’m stumped. But this is a bug we should be able to track down without
too much trouble. The last case, which worked, was special in at least three
ways: the orbit was circular, the masses were equal, and the masses were also

34 CHAPTER 3. TESTING THE N-BODY CODE

all equal to unity. The case which didn’t work did have none of these three
idealizations. Let’s modify each of those in turn.

Alice: It may be easiest to drop the unity of the masses. If we make the mass
ten times smaller, the potential energy becomes one hundred times smaller, and
so should the kinetic energy of each particle. Since the mass is already ten times
smaller, we can make the kinetic energy a hundred times smaller but lowering
the velocity by a factor 1/

√
(10). This means that the new velocity of each

particle should become v = (1/
√

(2))(1/
√

(10)) = 1/2
√

(5).

Bob: Here goes, with test3.in:

2
0
0.1
0.5 0
0 0.22360679774997896964
0.1
-0.5 0
0 -0.22360679774997896964

I’ll use the same parameters for the fourth-order Runge-Kutta integrator, in my
N-body code:

|gravity> ruby rknbody1a_driver.rb < test3.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.05 , E_pot = -0.01 , E_tot = 0.04

E_tot - E_init = 0
(E_tot - E_init) / E_init = 0

at time t = 10, after 100000 steps :
E_kin = 0.05 , E_pot = -0.01 , E_tot = 0.04

E_tot - E_init = -2.64e-15
(E_tot - E_init) / E_init = -6.59e-14

2
9.9999999999900329e+00
1.0000000000000001e-01
-1.1897419599036606e-01 -4.8563889948034655e-01
2.1718431835122404e-01 -5.3206877960568291e-02
1.0000000000000001e-01
1.1897419599036606e-01 4.8563889948034655e-01
-2.1718431835122404e-01 5.3206877960568291e-02

3.5. ANOTHER VARIATION 35

3.5 Another Variation

Alice: Nothing wrong here. So changing the masses did not help, at least not
for our circular orbit. Shall we try to increase the eccentricity, while leaving the
masses both unity? We can just make the velocities a bit smaller. How about
this, as the file test4.in:

2
0
1
0.5 0
0 0.5
1
-0.5 0
0 -0.5

Here goes:

|gravity> ruby rknbody1a_driver.rb < test4.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -1 , E_tot = -0.75

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.307 , E_pot = -1.06 , E_tot = -0.75

E_tot - E_init = -1.35e-14
(E_tot - E_init) / E_init = 1.81e-14

2
9.9999999999900329e+00
1.0000000000000000e+00
4.4625642676571020e-01 1.5717985834439904e-01
-3.3221408890524584e-01 4.4320400716535185e-01
1.0000000000000000e+00
-4.4625642676571020e-01 -1.5717985834439904e-01
3.3221408890524584e-01 -4.4320400716535185e-01

36 CHAPTER 3. TESTING THE N-BODY CODE

3.6 Two Variations

Bob: Still no cigar. Nothing wrong here either. How about changing both the
masses and the eccentricity? I’ll just make the masses ten percent smaller, while
leaving everything else the same, calling the file test5.in:

2
0
0.9
0.5 0
0 0.5
0.9
-0.5 0
0 -0.5

Try again:

|gravity> ruby rknbody1a_driver.rb < test5.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.56 , E_pot = -1.09 , E_tot = -0.529

E_tot - E_init = 0.031
(E_tot - E_init) / E_init = -0.0554

2
9.9999999999900329e+00
9.0000000000000002e-01
2.1147553247493753e-01 -3.0575926734969655e-01
7.4020397769574453e-01 1.1195514589010475e-01
9.0000000000000002e-01
-2.1147553247493753e-01 3.0575926734969655e-01
-7.4020397769574453e-01 -1.1195514589010475e-01

Alice: Here we clearly have a problem, and a big one: terrible energy conser-
vation. So now we know that the problem does not depend on having unequal
masses, but it does seem to require both non-circularity and masses that differ
from unity.

Bob: We’re getting a little closer, but we may still have quite a ways to go!

3.7. A SINGLE TIME STEP 37

3.7 A Single Time Step

Alice: Let’s take a single time step, to see where and how things go wrong.
And let’s take a relatively big step. That should make it easier to interpret the
output:

|gravity> ruby rknbody1b_driver.rb < test5.in
dt = 0.01
dt_dia = 0.01
dt_out = 0.01
dt_end = 0.01
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 0.01, after 1 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 3.6e-06
(E_tot - E_init) / E_init = -6.43e-06

2
1.0000000000000000e-02
9.0000000000000002e-01
4.9995499977502056e-01 4.9998499955000017e-03
-9.0000900017438174e-03 4.9995499797487092e-01
9.0000000000000002e-01
-4.9995499977502056e-01 -4.9998499955000017e-03
9.0000900017438174e-03 -4.9995499797487092e-01

Bob: But not nearly easy enough! I don’t like to compute by hand all the steps
in the fourth-order Runge-Kutta algorithm. How about checking whether the
forward Euler breaks down as well? That will be far easier to check by hand.

Alice: You may be right. Let’s take a break first, and then take a fresh look at
the whole situation.

38 CHAPTER 3. TESTING THE N-BODY CODE

Chapter 4

Debugging the N-body
Code

4.1 Forward Euler

Bob: Okay, ready to chase and catch our bug?

Alice: Sure thing! And I like your idea to simplify things and turn to our
old friend, the forward Euler algorithm. And we may as well make the total
integration time a bit shorter, to speed things up.

|gravity> ruby rknbody1c_driver.rb < test5.in
dt = 0.0001
dt_dia = 1
dt_out = 1
dt_end = 1
method = forward
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 1, after 10000 steps :
E_kin = 0.875 , E_pot = -1.37 , E_tot = -0.497

E_tot - E_init = 0.0628
(E_tot - E_init) / E_init = -0.112

2
9.9999999999990619e-01
9.0000000000000002e-01
3.8764717723091237e-02 2.9255040141287891e-01
-8.9213055091367810e-01 -2.8150072109002572e-01

39

40 CHAPTER 4. DEBUGGING THE N-BODY CODE

9.0000000000000002e-01
-3.8764717723091237e-02 -2.9255040141287891e-01
8.9213055091367810e-01 2.8150072109002572e-01

Bob: That doesn’t look too good, but then again, forward Euler is not a great
integrator. I’ll give it a ten times smaller time step:

|gravity> ruby rknbody1d_driver.rb < test5.in
dt = 1.0e-05
dt_dia = 1
dt_out = 1
dt_end = 1
method = forward
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 1, after 100000 steps :
E_kin = 0.876 , E_pot = -1.37 , E_tot = -0.497

E_tot - E_init = 0.0626
(E_tot - E_init) / E_init = -0.112

2
9.9999999999808376e-01
9.0000000000000002e-01
3.8685902921474627e-02 2.9243384480372231e-01
-8.9221956236710909e-01 -2.8194011853141043e-01
9.0000000000000002e-01
-3.8685902921474627e-02 -2.9243384480372231e-01
8.9221956236710909e-01 2.8194011853141043e-01

4.2 Nothing Wrong

Alice: Okay, this is really wrong. Almost the same magnitude for the error.

Bob: Now that we know that the forward Euler method also fails for this orbit,
we can take a single time step, and track things by hand.

|gravity> ruby rknbody1e_driver.rb < test5.in
dt = 0.01
dt_dia = 0.01
dt_out = 0.01
dt_end = 0.01

4.2. NOTHING WRONG 41

method = forward
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 0.01, after 1 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0.000121
(E_tot - E_init) / E_init = -0.000217

2
1.0000000000000000e-02
9.0000000000000002e-01
5.0000000000000000e-01 5.0000000000000001e-03
-9.0000000000000011e-03 5.0000000000000000e-01
9.0000000000000002e-01
-5.0000000000000000e-01 -5.0000000000000001e-03
9.0000000000000011e-03 -5.0000000000000000e-01

Let me print out the initial conditions again:

2
0
0.9
0.5 0
0 0.5
0.9
-0.5 0
0 -0.5

The initial velocity is along the y axis, so after one step the x components of the
positions of the particles should not be affected. Indeed, they remain at 0.5.

The y components of the positions should be equal to v∆t = 0.01v. And so
they are.

As for the velocities, their y components should be unchanged, and indeed that
is the case.

Finally, the x components of the velocities should be equal to a∆t = 0.01a. The
acceleration, for particles of mass 0.9, at distance 1, should be 0.9, which means
that |a∆t| = 0.009. All that checks too.

Alice: Yes, it is much easier to visually inspect a forward Euler scheme than a
fourth-order Runge-Kutta, I agree!

Bob: But how strange. It seems that there is really nothing wrong with this
step. If this step is correct, how can things go wrong later on? Admittedly, we

42 CHAPTER 4. DEBUGGING THE N-BODY CODE

are still starting from a somewhat special case, launching our particles parallel
to the y axis, while being positioned on the x axis. Perhaps we should take a
really generic initial position, not lined up with anything at all?

4.3 Two Possibilities

Alice: Hmmm. You know, it might indeed be that the integration is proceeding
fine, but that there is an error in the determination of the energy error.

Bob: Ah, that could well be the case. That would be like trying to land an
airplane, and to see a warning light coming on, telling you that your landing
gear is not fully unfolded. There are two possibilities: either your landing gear
is faulty or the warning light is malfunctioning.

Alice: If I were the pilot, I would surely hope that it is the warning light that
is at fault. In our case either way is no problem, either way, as long as we can
trace where what went wrong.

Bob: But for tracking down energy diagnostics, we really have to get back to
the code, and read all the lines that compute energies. Unlike the integration
itself, where we can slow down to take just one time step, the energy diagnostics
have no free parameter; either you do it or you don’t.

Alice: Before we look at the code, let us stare at the output just a bit longer.
It still may give us a clue. But I don’t like to think about slightly eccentric
and slightly non-unity masses. Let us run the equal-mass circular binary with
masses unity once more, and that one, too, for just one time step:

|gravity> ruby rknbody1e_driver.rb < test2.in
dt = 0.01
dt_dia = 0.01
dt_out = 0.01
dt_end = 0.01
method = forward
at time t = 0, after 0 steps :
E_kin = 0.5 , E_pot = -1 , E_tot = -0.5

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 0.01, after 1 steps :
E_kin = 0.5 , E_pot = -1 , E_tot = -0.5

E_tot - E_init = 0.0002
(E_tot - E_init) / E_init = -0.0004

2
1.0000000000000000e-02
1.0000000000000000e+00
5.0000000000000000e-01 7.0710678118654745e-03

4.4. BACK TO SQUARE ONE 43

-1.0000000000000000e-02 7.0710678118654746e-01
1.0000000000000000e+00
-5.0000000000000000e-01 -7.0710678118654745e-03
1.0000000000000000e-02 -7.0710678118654746e-01

Bob: This one, too, is perfect. I’m getting better at ‘reading’ the forward Euler
output: I can see now immediately that both the directions and the magnitudes
of the increments in position and velocity are correct. The acceleration here is
just 1.

4.4 Back to Square One

Alice: I guess we’ll have to walk through the code, much as I don’t like to do
that, as a matter of principle. A good code should give you enough diagnostics
to allow you to track down a bug by treating it as a black box.

Bob: The only other numbers here, apart from the energy errors, are the kinetic
and potential energy, and they are obviously correct, given the values for the
circular binary: at distance 1 and masses 1, the potential energy must be -1,
and with velocity 0.5, each kinetic energy is 1/4, so 0.5 in total.

Alice: Ah, you are looking at the energies at time t = 0. That is a great idea:
if it is a matter of the warning light malfunctioning, chances are that it already
malfunctioned when the plane took off!

Bob: But I’ve just shown that it did not malfunction!

Alice: But the circular binary did not give us any problems. It was the non-
unity masses and the eccentricity that did it. Let us redo that one forward Euler
step, which showed a correct integration in that case, and let us check by hand
whether the initial energy is computed correctly there. Let us put everything
on the table once more. First the initial conditions:

2
0
0.9
0.5 0
0 0.5
0.9
-0.5 0
0 -0.5

Then the result of the one time step:

44 CHAPTER 4. DEBUGGING THE N-BODY CODE

|gravity> ruby rknbody1e_driver.rb < test5.in
dt = 0.01
dt_dia = 0.01
dt_out = 0.01
dt_end = 0.01
method = forward
at time t = 0, after 0 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 0.01, after 1 steps :
E_kin = 0.25 , E_pot = -0.81 , E_tot = -0.56

E_tot - E_init = 0.000121
(E_tot - E_init) / E_init = -0.000217

2
1.0000000000000000e-02
9.0000000000000002e-01
5.0000000000000000e-01 5.0000000000000001e-03
-9.0000000000000011e-03 5.0000000000000000e-01
9.0000000000000002e-01
-5.0000000000000000e-01 -5.0000000000000001e-03
9.0000000000000011e-03 -5.0000000000000000e-01

The initial potential energy must be equal to the square of the masses, divided
by the distance, 0.9 × 0.9/1 = 0.81. That is indeed what the code gives. The
initial kinetic energy for each particle must be 0.5× 0.9× 0.5× 0.5 = 0.1125, so
for both particles together 0.225. Hey! The code output gives us 0.25 !

4.5 A Warning Light

Bob: So it is the warning light, after all. The potential energy gets calculated
correctly, but the kinetic energy doesn’t. That will be easy to check. Here is
the method in the Body class:

def ekin # kinetic energy
0.5*(@vel*@vel)

end

And indeed, I left out the mass! How simple. Of course, it should have been:

def ekin # kinetic energy
0.5*@mass*(@vel*@vel)

end

4.6. HINDSIGHT 45

And I can understand now why I made that mistake: in our earlier two-body
code the corresponding method was:

def ekin # kinetic energy
0.5*(@vel*@vel) # per unit of reduced mass

end

and as the comment indicated, there it was defined per unit of reduced mass. I
just erased the comment, since I knew that the concept of reduced mass only
applies to a two-body problem, and not to the general N-body problem. But
although I erased the comment, I failed to change the code line itself, by adding
the mass factor!

What a blunder. And I even commented on the fact that I was so careful to
include an extra mass factor in my definition of the potential energy! But in
that case, I was modeling the potential energy method epot after the method
acc that calculates the acceleration, because both involve a loop over all other
particles. That is why I did not compare the epot and ekin methods.

Alice: Well, it is an easy mistake to make. I have made plenty of much more
obvious mistakes in my life! The challenge is not so much to write correct code,
but to debug code correctly. And I think we did pretty well, given the fact that
this was a very tricky bug to discover in the first place.

Bob: Tricky indeed: if we would have only tried a circular orbit, even with
masses that were not unity, we would have never found this bug. I’m very glad
now that you insisted on using unequal masses!

Alice: Unequal masses and eccentricity. If we would have used unequal masses
for an eccentric orbit, we still would not have seen a problem with energy con-
servation. The energy would have been calculated wrong at time t=0, but for
a circular orbit, energy and potential remain constant throughout the orbit. So
the same mistake in kinetic energy would have been present at any later time,
and the code would have reported no significant energy change; our energy drift
warning light would not have come on!

Bob: You are right. Now that is a tricky bug. Clearly the moral of the story
is: test any new code for generic input data, not only for input data that are
easy to generate and easy to interpret.

4.6 Hindsight

Alice: Ah, but wait a minute! Before we congratulate ourselves too much, I
wonder whether we should not have noticed that there was something wrong

46 CHAPTER 4. DEBUGGING THE N-BODY CODE

with the energies in the case of the circular orbit where the masses of the two
stars were equal to each other, but different from unity. Let us look at that
case again. Where did we file those data? Ah, here it is: we stored the initial
conditions in the file test3.in:

2
0
0.1
0.5 0
0 0.22360679774997896964
0.1
-0.5 0
0 -0.22360679774997896964

Let us run that case again, with the original code rknbody1.rb:

|gravity> ruby rknbody1a_driver.rb < test3.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.05 , E_pot = -0.01 , E_tot = 0.04

E_tot - E_init = 0
(E_tot - E_init) / E_init = 0

at time t = 10, after 100000 steps :
E_kin = 0.05 , E_pot = -0.01 , E_tot = 0.04

E_tot - E_init = -2.64e-15
(E_tot - E_init) / E_init = -6.59e-14

2
9.9999999999900329e+00
1.0000000000000001e-01
-1.1897419599036606e-01 -4.8563889948034655e-01
2.1718431835122404e-01 -5.3206877960568291e-02
1.0000000000000001e-01
1.1897419599036606e-01 4.8563889948034655e-01
-2.1718431835122404e-01 5.3206877960568291e-02

Bob: You are right! Now that we know what to look for, it is obvious that the
diagnostics output is totally wrong. Already at time t = 0, the total energy is
positive: E tot = 0.04. A binary with positive total energy will immediately
fly apart. We should have noticed that right away!

4.7. BUG FIXED 47

Alice: We should have, yes, but we didn’t. It goes to show: even with good
diagnostics, it is easy to overlook a trouble signal. To continue with your anal-
ogy of a pilot, looking at a warning signal: in a cockpit with many different
indicators, one can overlook the fact that one of the meters gives an impossible
result. We were staring at the red light of errors in energy conservation, and we
overlooked the less obvious lights.

Bob: Still, I feel pretty stupid that I didn’t see that we were setting up a binary
with binding energy of the wrong sign.

Alice: Well, that makes two of us. But the goal of good software development
is not to make programmers perfect, since that is impossible. Instead, the
goal should be to make debugging easy enough, so that imperfect people can
still converge to an almost-perfect code, when they try hard enough. This in
itself is already enough of a reason for using a language like Ruby, where the
programmers are not bogged down with trying to keep the compiler happy. We
can at least spend all of our energy on the debugging process itself, without
worrying about declarations and type checking and all the other constraints
that the more classical languages always bring with them.

Bob: You have a charitable interpretation of human weakness. Even so, I really
will try not to make this kind of silly mistake again.

Alice: Famous last words!

4.7 Bug Fixed

Bob: So, we’re done!

Alice: It seems that way. But it would not hurt to test our original run again,
now that you have fixed the code. You know, it would not be the first time that
a code contains more than one bug. Another common mistake people make is
to find a glaring bug in a code, fix it, and then happily declare the code to be
correct, without looking further.

Bob: Okay! I will call the corrected version rknbody2.rb, since I would like to
keep the original file rknbody1.rb, to show to my students later on. It would
be interesting to see how they would go about debugging it. Here is our original
run, but now with the corrected code:

|gravity> ruby rknbody2a_driver.rb < test1.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :

48 CHAPTER 4. DEBUGGING THE N-BODY CODE

E_kin = 0.02 , E_pot = -0.16 , E_tot = -0.14
E_tot - E_init = 0

(E_tot - E_init) / E_init = -0
at time t = 10, after 100000 steps :
E_kin = 0.0887 , E_pot = -0.229 , E_tot = -0.14

E_tot - E_init = 4.55e-15
(E_tot - E_init) / E_init = -3.25e-14

2
9.9999999999900329e+00
8.0000000000000004e-01
1.1992351097726084e-01 -7.2126916688572407e-02
2.0616138205436191e-01 4.2779060839347856e-02
2.0000000000000001e-01
-4.7969404390904336e-01 2.8850766675428963e-01
-8.2464552821744763e-01 -1.7111624335739142e-01

4.8 One More Check

Alice: That’s it: the energy conservation is perfect. But let us not declare
victory too early: let’s compare the actual positions and velocities with what we
got with our earlier two-body code. However, to compare the data, it would be
better to convert our results to relative coordinates between the two particles.
That should be easy: let us make a little script for this simple form of data
reduction, and call it rknbody2a reduce.rb:

require "rknbody2.rb"

include Math

nb = Nbody.new
nb.simple_read

relative_position = nb.body[0].pos - nb.body[1].pos
relative_velocity = nb.body[0].vel - nb.body[1].vel

print "relative_position = [", relative_position[0], ", ",
relative_position[1], "]\n"

print "relative_velocity = [", relative_velocity[0], ", ",
relative_velocity[1], "]\n"

All it does is to read in an N-body system, and print the relative positions and
velocities of the first two particles with respect to each other. We can then pipe
the results from our previous calculation into our new script:

4.8. ONE MORE CHECK 49

|gravity> ruby rknbody2a_driver.rb < test1.in | ruby rknbody2a_reduce.rb
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.02 , E_pot = -0.16 , E_tot = -0.14

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.0887 , E_pot = -0.229 , E_tot = -0.14

E_tot - E_init = 4.55e-15
(E_tot - E_init) / E_init = -3.25e-14

relative_position = [0.599617554886304, -0.360634583442862]
relative_velocity = [1.03080691027181, 0.213895304196739]

And compare the results with what we found directly with our two-body code:

|gravity> ruby integrator_driver2h.rb < euler.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.125 , E_pot = -1 , E_tot = -0.875

E_tot - E_init = 0
(E_tot - E_init) / E_init =-0

at time t = 10, after 100000 steps :
E_kin = 0.554 , E_pot = -1.43 , E_tot = -0.875

E_tot - E_init = -8.33e-14
(E_tot - E_init) / E_init =9.52e-14
1.0000000000000000e+00
5.9961755488723312e-01 -3.6063458344261029e-01
1.0308069102701605e+00 2.1389530419780176e-01

Bob: Indeed, very closely the same, to well over ten decimals! Very nice. I
think we can declare victory now.

Alice: For the time being, yes. But I would never discount the possibility
that somewhere, in some dark corner, some other little bug may still be hiding.
However, at some point you just have to move on, while staying vigilant, always

50 CHAPTER 4. DEBUGGING THE N-BODY CODE

being prepared to go back to inspect older codes that you were convinced to be
fully debugged.

Bob: By the way, I’m glad we decided to put the energy diagnostics on the
standard error stream STDERR, while keeping only the particle output on the
standard output stream. If we would have written everything on the standard
output, it would have been impossible to pipe the data into the next program,
as we did above.

Alice: For now, yes, that was a good strategy. But I worry about the idea of
scattering related data in completely different directions. Actually, it would be
even better to encapsulate the error diagnostics somewhere in the output, in
order to keep the data together. Soon we should introduce a new data format,
once that keeps everything bundled, but in such a way that the next program
will have a fixed and known way to find the data it wants.

Bob: You mean a form of self-describing data? Like the FITS format that
observers use? Yes, that would be interesting, and it would not be too hard to
implement.

Chapter 5

A Single-Links Version

5.1 A Figure-8 Triple

Bob: Now that we’re pretty sure that we can integrate the two-body problem
with our new code, how about trying our hand at a three-body system? After
all, that was the reason I wrote this program, to go beyond two bodies.

Alice: We will have to choose some initial conditions. Rather than picking
something at random, how about trying to integrate a figure-eight configuration?

Bob: You mean this new ‘classical’ solution to the equal-mass three-body sys-
tem that was discovered recently by Montgomery and Chenciner? I remember
how surprised I was when I first read about that. I had always assumed that
the classic celestial mechanicians had found all the interesting solutions already
centuries ago, you know, Legendre, Lagrange, Laplace, and perhaps a few others
Le’s and La’s. I was thrilled to see such an elegant new solution.

Alice: Me too. As soon as I read about it, I tried it out for myself, and by golly,
the configuration was stable: three stars chasing each other on a figure eight,
without the system falling apart. You could even perturb the initial conditions
by a fraction of a percent, and preserve stability.

Bob: This all goes to show that we really should implement some form of
graphics soon. I’d love to see how the new code will handle that configuration.

Alice: I agree. But at least for now, we can use the figure-eight triple to test
the code. I stored the initial conditions somewhere. Ah, here they are. I’ll put
them in a file named figure8.in:

3
0
1
0.9700436 -0.24308753

51

52 CHAPTER 5. A SINGLE-LINKS VERSION

0.466203685 0.43236573
1
-0.9700436 0.24308753
0.466203685 0.43236573
1
0 0
-0.93240737 -0.86473146

The third particle starts in in the center of the figure eight, in the exact center of
the coordinate system. The other two bodies move symmetrically with respect
to each other, each one third of a period displaced. Ah, my notes tell me that
I found the total period of revolution to be about 6.3264 time units. Let us
integrate our system for 1/3 of that time: since all particles have the same
mass, after 1/3 of the period they should have changed places. That means an
integration for a total of 2.1088 time units.

5.2 Switching Places

Bob: Let’s predict what will happen. The third particle has velocity compo-
nents that are negative, both in the x and y direction. This means that it moves
to the left and downward. That would suggest that it will in due time reach the
position of the second particle, the particle that starts off with a large negative
x value. The second particle then has no choice but to replace the first parti-
cle, and the first one will in turn wind up in the center. So I predict that an
integration of 2.1088 time units will produce the following output:

3
0
1
0 0
-0.93241 -0.86473
1
0.97004 -0.24309
0.46620 0.43237
1
-0.97004 0.24309
0.46620 0.43237

I have only given five digits, since you gave the total time duration to that accu-
racy, and therefore there is no guarantee that we will halt the calculation exactly
after 1/3 of an orbit; in fact we are bound to either overshoot or undershoot,
making an error in the fifth or sixth significant digit in all coordinates.

Alice: That seems reasonable. This will be a nice test. Let’s try it!

5.3. SINGLE LINKS IN BODY 53

|gravity> ruby rknbody2b_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Bob: Not quite as good as I had hoped, but I certainly came close.

Alice: I’d say! And you were right about the order of the particles. The first
particle did indeed reach very close to the center, and all other particles reached
your predicted position to within a fraction of a tenth of a percent: in all cases
the first three digits are correct. Congratulations!

Bob: Thanks! So let’s move on.

5.3 Single Links in Body

Alice: Well, before we move on, let us revisit the choice you made of installing
double links between the particles in an N-body system and their parents. In the
Nbody class you have an array of bodies @body that gives access to the members
of the Body class, while in the Body class there is an instance variable @nb that
gives each particle access to its parent.

Bob: Yes, I remember that you were not happy with that choice.

Alice: The problem is, I can see the danger of modifying, say, the downward

54 CHAPTER 5. A SINGLE-LINKS VERSION

link and forgetting to make a corresponding modification in the upward link.
Let’s play with some alternatives.

Bob: Be my guest! I’ll keep a copy of the last, debugged, version, and it is fun
to try out some alternative implementations. After all, Ruby invites this type
of prototyping. Here, why don’t you take the key board.

Alice: The simplest way to do away with the need for a backward pointer @nb
would be to give the Body method acc an extra parameter. Let me take out the
declaration of @nb in the attr accessor of the Body class, and let me replace
your Body method

def acc
a = @pos*0 # null vector of the correct length
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
r2 = r*r
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)

end
end
a

end

by a new version, that takes the array of bodies as an explicit parameter:

def acc(body_array)
a = @pos*0 # null vector of the correct length
body_array.each do |b|
unless b == self
r = b.pos - @pos
r2 = r*r
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)

end
end
a

end

Of course, we have to do the same thing for the potential energy calculation,
where we replace

5.4. SINGLE LINKS IN NBODY 55

def epot # potential energy
p = 0
@nb.body.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r)

end
end
p

end

by the equivalent version:

def epot(body_array) # potential energy
p = 0
body_array.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r)

end
end
p

end

5.4 Single Links in Nbody

Bob: Okay, and let us put the code into a separate file rknbody3.rb. Life gets
a bit simpler for the Nbody code: when it creates its daughters, it no longer has
to tell them who their parent is. Instead of the old version:

def initialize(n=0, time = 0)
@time = time
@body = []
for i in 0...n
@body[i] = Body.new
@boby[i].nb = self

end
end

we now will use the simpler and more natural version:

56 CHAPTER 5. A SINGLE-LINKS VERSION

def initialize(n=0, time = 0)
@time = time
@body = []
for i in 0...n
@body[i] = Body.new

end
end

And similarly we can leave out the corresponding line in the simple read
method: instead of

def simple_read
n = gets.to_i
@time = gets.to_f
for i in 0...n
@body[i] = Body.new
@body[i].nb = self
@body[i].simple_read

end
end

we now have only:

def simple_read
n = gets.to_i
@time = gets.to_f
for i in 0...n
@body[i] = Body.new
@body[i].simple_read

end
end

5.5 The DRY Principle

Alice: Good! I was a bit worried about that repetition. It would have been
an easy mistake to make to modify the initialize method in one way, and
to either forget to modify the simple read method or worse, modify it in a
different way. Your original approach violated the DRY principle.

Bob: I wasn’t aware of violating anything, let alone a principle I hadn’t even
heard of. What is the DRY principle?

5.6. SIMPLIFYING FURTHER 57

Alice: Don’t Repeat Yourself. The idea is that you should try to avoid stating
the same information in more than one place, exactly because it is so easy to
update information in one place, and to forget to update it in one or more other
places.

Bob: But in many cases it could never hurt you. In C++, for example, you
normally declare all your functions, and specify the types of the arguments
and the return values, in different places from where you actually define those
functions. Now if you make a mistake, and provide conflicting information, the
compiler will give you an error message. So there is nothing that can go wrong
there.

Alice: Even if there is little danger for errors, it is annoying to have to provide
the same information in two places, especially if you work with header files,
where the information may even reside in one or more different files. Such
requirements go against any notion of rapid prototyping.

While violating the DRY principle may not always lead to likely errors, the con-
sequences are equally bad if it discourages free experimentation. In that way
you are likely to miss a more optimal solution. Miss out on more optimal solu-
tions often enough in a large software project, and you get an end product that
can be very far from optimal, through the aggregate effect of all the suboptimal
decisions you have made.

Bob: You sound like a manager. I must say that I don’t like to think in terms of
principles, and I tend do develop an allergy against people who follow principles
blindly. But I must admit that this particular idea makes a lot of sense. Having
to repeat information in different places in C++ is certainly one of the things
that I like least about that language. In fact, I’ve developed an allergy against
that feature already quite a while ago.

Alice: I’m glad to hear that your allergy against C++ is stronger than your
allergy against me, if I parse you correctly.

Bob: So far, certainly. Let’s see how things develop.

Alice: Given that C++ is less likely to change in any fundamental way soon,
I guess it’s up to us to see how our collaboration develops further. As for me, I
think our different attitudes have been balanced quite well, so far.

Bob: I agree. And I’m glad you take my recalcitrance with a sense of humor,
since I’m not likely to become ‘principled’ any time soon!

5.6 Simplifying Further

Alice: This discussion about the DRY principle started when I told you I was
glad that the initialize method no longer had to repeat what the simple read
method also did, namely the initialization of the upward links from particles to
N-body system, links that you have now removed. However, I still see some

58 CHAPTER 5. A SINGLE-LINKS VERSION

repetition left in the the initialization method, of stuff that is already taken
care of in simple read. Here is your latest version of initialize:

def initialize(n=0, time = 0)
@time = time
@body = []
for i in 0...n
@body[i] = Body.new

end
end

If you compare this with the input method simple read:

def simple_read
n = gets.to_i
@time = gets.to_f
for i in 0...n
@body[i] = Body.new
@body[i].simple_read

end
end

you see that the number of particles N and the time are being used here only.
After reading in N, simple read extends the array of bodies to contain N ele-
ments, and in the process it reads in the values for each body. And after reading
in the time, it assigns that value directly to @time. It seems to me that we can
simplify the initialize method to just:

def initialize
@body = []

end

Bob: That is a lot shorter, and yes, that would work fine in this case. The
reason that I included the two arguments to initialize is that I had been
thinking about a situation where you may want to construct an initial model,
say a Plummer model or a King model. In that case, you probably do want
to set up an array of N bodies, at a specified time, before you internally assign
values to the masses, positions and velocities of those bodies.

Alice: Ah, yes, in that case these extra arguments would come in handy, I
agree. But so far you have often made it clear to me that we should be demand-
driven, and that we should not build in extra options for possible future use,
unless we actually plan to use those pretty soon.

5.7. FINISHING THE REVISION 59

Bob: I agree. Yes, it would be fine with me to take your simpler version, at
least for now. We can easily extend initialize back to the longer form later
on, when needed.

Alice: great, four lines saved and one line simplified. What else is there left to
be done?

5.7 Finishing the Revision

Bob: Next we have to change the way in which acc gets called from within
Nbody. Let us start with forward Euler, which I had written as:

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

The change is quite minimal: there is only the extra argument in acc and
everything else remains the same:

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc(@body)}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

But I must admit, I don’t particularly like to make that one line longer, espe-
cially since it breaks the nice symmetry between pos and vel on the one hand,
and acc on the other hand.

Alice: But that symmetry is only superficial, and in fact quite dangerous: pos
and vel are actual variables whereas acc is a method. If you do not change
pos explicitly, you can count on it to keep its old values. However, the same is
not true for acc. You can call acc and then when you change pos and call acc
again, you get a different value. In fact, as soon as you change the position pos
for only one particle, a call to acc for any particle will be affected!

It is much better to warn yourself of this side effect, by making it clear that
there is a hidden dependency: and the best way to show this dependency is by
expressing it in the form of an argument to the method acc. In that case the

60 CHAPTER 5. A SINGLE-LINKS VERSION

dependency is no longer hidden, and the user is warned of the fact that acc
depends on the states of all the bodies.

Bob: I see your point, but I still like the symmetry of my original notation.
In any case, I agree that I should have commented the hidden dependency, at
the very least in the form of an explicit comment. Meanwhile, let me make the
same changes for any call to acc in any of the other integrators.

Alice: And don’t forget to make the change in epot as well.

Bob: Ah yes, I had already forgotten about that one. In any case, the inter-
preter would have complained about a wrong number of arguments in epot, but
let me modify epot as well.

5.8 Two Tests

Alice: Let’s now do the same tests, for our generic two-body problem, and our
figure-8 three-body problem.

Bob: Okay, here is the two-body problem that we started our testing cycle
with, but now with the new code:

|gravity> ruby rknbody3a_driver.rb < test1.in
dt = 0.0001
dt_dia = 10
dt_out = 10
dt_end = 10
method = rk4
at time t = 0, after 0 steps :
E_kin = 0.02 , E_pot = -0.16 , E_tot = -0.14

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 10, after 100000 steps :
E_kin = 0.0887 , E_pot = -0.229 , E_tot = -0.14

E_tot - E_init = 4.55e-15
(E_tot - E_init) / E_init = -3.25e-14

2
9.9999999999900329e+00
8.0000000000000004e-01
1.1992351097726084e-01 -7.2126916688572407e-02
2.0616138205436191e-01 4.2779060839347856e-02
2.0000000000000001e-01
-4.7969404390904336e-01 2.8850766675428963e-01
-8.2464552821744763e-01 -1.7111624335739142e-01

Alice: Good! The same results as for the previous version of the code.

5.8. TWO TESTS 61

Bob: And here is the new figure-8 result:

|gravity> ruby rknbody3b_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Alice: And that’s the same as well. It seems that you have correctly trans-
formed the code from doubly-linked to singly-linked.

62 CHAPTER 5. A SINGLE-LINKS VERSION

Chapter 6

Returning to Simplicity

6.1 Extra Body Variables

Bob: Now that we’ve begun to modify my original N-body code, I would like to
write a third version, where I keep local copies of the auxiliary variables, such as
old acc, half vel, and the like, as instance variables of the Body class. That
should make the notation within the integrator methods a lot simpler. I don’t
like the notion of proliferating instance variables, though.

Alice: I don’t think that would be such a bad thing. One could argue that in
object-oriented programming, it is appropriate to modify the object if you use
it for a different purpose. And especially in Ruby, such a modification will be
easy. You can always add a few lines in a new class definition, and as you know,
those new lines will be directly added to the existing definitions.

Bob: Yeah, well, I still prefer to be parsimonious. But I’m curious to see how
much simpler the integrators will become. The first step will be to add those
auxiliary variables to the Body class. In the first version of the code, I had:

attr_accessor :mass, :pos, :vel, :nb

In the alternative version, we left out the backward link:

attr_accessor :mass, :pos, :vel

And now let me put in the extra variables:

attr_accessor :mass, :pos, :vel, :old_pos, :half_vel, :a0, :a1, :a2

Ah, this is the only modification that we have to make to the Body class, so
you’re right, it is not as bad as I thought. All other changes happen only in the
Nbody class!

63

64 CHAPTER 6. RETURNING TO SIMPLICITY

6.2 Alternatives

Alice: But is this really necessary? I thought that in Ruby you can take any
class definition, whether you defined the class yourself or whether you get it
from a library, and extend that class by adding something like

class Body
. . .

end

Bob: Yes, that is true. Indeed, we have used that procedure to define the
method to v for the Array class. However, in our code we have two class
definitions directly following each other in a single file. The first one gives the
Body class, and the second one gives the Nbody class. I suppose I could have given
three definitions: first a standard one for Body, then the particular extension in
the form of a second, additional definition for Body as you just indicated, and
finally the Nbody class definition. But since everything is bundled in the same
file anyway, that seemed to me to be a rather unnecessary maneuver.

Alice: Well, you know I like modularity. And you yourself were just complaining
about the fact that a modification in the Nbody class forced you to intrude in the
earlier definition of the Body class. At the very least, writing three definitions
that way will make it more clear what is going on.

In fact, I would probably prefer to put the standard Body class definition in one
file, and the Nbody class definition in another file. In that case, you can add
the necessary Body extensions to the second file, together with the Nbody class
definition that triggered the extensions.

Bob: I don’t like to create a plethora of small files. But I see your point. And
come to think of it, there must be other solutions.

Alice: Well, the best thing would be if you could modify the definition of the
Body class from within Nbody, but I’m pretty sure that would violate some Ruby
rules.

Bob: Actually, I’m not so sure. In Ruby you can do almost anything. The trick
is to find out how. Hmmm. I have read something about a Ruby class called
Binding, and a method binding, both of which seem to be related to creating
the possibility to do just the sort of thing you brought up.

Alice: What do you know. Well, not now, I suggest.

Bob: I agree.

6.3 Forward

Alice: Let’s start again with the forward Euler method, listing now all three

6.4. CLEAN CODE 65

versions in order: your original one; the one we got by including an explicit
parameter in the acc call; and the new version you’re writing now with extra
variables in the Body class:

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

def forward(dt)
old_acc = []
@body.each_index{|i| old_acc[i] = @body[i].acc(@body)}
@body.each{|b| b.pos += b.vel*dt}
@body.each_index{|i| @body[i].vel += old_acc[i]*dt}

end

def forward(dt)
@body.each{|b| b.old_acc = b.acc(@body)}
@body.each{|b| b.pos += b.vel*dt}
@body.each{|b| b.vel += b.old_acc*dt}

end

6.4 Clean Code

Bob: I must say, it is very gratifying to see how much cleaner this last version
looks. Let me rewrite the other three integration methods as well, and call this
file rknbody4.rb. Here they all are:

def leapfrog(dt)
@body.each{|b| b.vel += b.acc(@body)*0.5*dt}
@body.each{|b| b.pos += b.vel*dt}
@body.each{|b| b.vel += b.acc(@body)*0.5*dt}

end

66 CHAPTER 6. RETURNING TO SIMPLICITY

def rk2(dt)
@body.each{|b| b.old_pos = b.pos}
@body.each{|b| b.half_vel = b.vel + b.acc(@body)*0.5*dt}
@body.each{|b| b.pos += b.vel*0.5*dt}
@body.each{|b| b.vel += b.acc(@body)*dt}
@body.each{|b| b.pos = b.old_pos + b.half_vel*dt}

end

def rk4(dt)
@body.each{|b| b.old_pos = b.pos}
@body.each{|b| b.a0 = b.acc(@body)}
@body.each{|b| b.pos = b.old_pos + b.vel*0.5*dt + b.a0*0.125*dt*dt}
@body.each{|b| b.a1 = b.acc(@body)}
@body.each{|b| b.pos = b.old_pos + b.vel*dt + b.a1*0.5*dt*dt}
@body.each{|b| b.a2 = b.acc(@body)}
@body.each{|b| b.pos = b.old_pos + b.vel*dt + (b.a0+b.a1*2)*(1/6.0)*dt*dt}
@body.each{|b| b.vel += (b.a0+b.a1*4+b.a2)*(1/6.0)*dt}

end

Alice: A lot easier to read. A great improvement over the previous two versions,
though not quite as clean as the two-body version. Let’s put up the rk4 method
for the old two-body code:

def rk4(dt)
old_pos = pos
a0 = acc
@pos = old_pos + vel*0.5*dt + a0*0.125*dt*dt
a1 = acc
@pos = old_pos + vel*dt + a1*0.5*dt*dt
a2 = acc
@pos = old_pos + vel*dt + (a0+a1*2)*(1/6.0)*dt*dt
@vel = vel + (a0+a1*4+a2)*(1/6.0)*dt

end

Bob: The difference is that in our latest version we still have to indicate which
body b it is that gets the instructions, hence the ”b.” in front of each pos, vel,
etc., call.

6.5 Sending a String

Alice: Well, I have an idea. Perhaps we can get rid of the ”b.” in front of each
physical variable, after all.

6.5. SENDING A STRING 67

Bob: How? I mean, you have to loop over each particle! I can’t see how you
can get rid of that.

Alice: You can’t get rid of that, I agree, but you don’t have to repeat the fact
that you are looping many times in one line, as we are doing now. I think we
can express the idea of a loop just once in each line.

Bob: I still don’t see how you can do that. In the old two-body code, we
could get away with writing pos += vel*dt because there was only one pos
and one vel, but here we have little choice but writing b.pos += b.vel*dt, at
a minimum. And I already chose the shortest name I could think of, b for the
body whose pos gets updated!

Alice: My idea is to let the Nbody class give a command to the Body class,
specifying directly to do pos += vel*dt for particle b, without repeating the b
presence separately for pos and vel.

Bob: That would be nice, yes, but it still looks impossible to do, since it would
involve something sending that whole line to the Body class!

Alice: Exactly!

Bob: I beg your pardon?

Alice: You got it! Let us send that line to the Body class! We can ask the
integration methods in Nbody to specify what needs to be done, but instead of
making the actual command calls, these methods can write the commands into
a string, and then pass that string down to the Body class.

Bob: Hey, that is a great idea! I would never have thought about that. Can
you really do that? Well, of course you can. I guess I’m still thinking too much
in Fortran and C terms. But I must say, I’m beginning to get really worried
about speed; this may slow down execution of the code even more. And Ruby
is already slow to begin with.

Alice: Let us postpone efficiency discussions for later. I’m pretty hopeful that
we can find ways to speed things up later. In the worst case we can switch
back to a more traditional form in our final production code. If we can make
the prototyping process easier and more transparent, that would already be a
big gain. I care less about elegance of the final version than I do about the
intermediate test versions.

Bob: Well, okay, but we shouldn’t wait too long in checking the speed. I would
feel more comfortable if we had some hard-nosed proof that a Ruby-based N-
body code can really compete with codes written in C or Fortran. Meanwhile, I
must admit, I do like the flexibility of Ruby. What a trick, to implement message
passing between the Nbody system scheduler and the individual bodies, literally
by passing messages in the form of a string!

Alice: Yes, Ruby invites a different way of thinking. Even if you could find
a way to do such a trick in C++, in some convolved way, the point is that it
would not occur to you to do so, since the language does not invite that way of

68 CHAPTER 6. RETURNING TO SIMPLICITY

thinking.

Bob: Quite convolved: for one thing, you would need to find a way to implement
a form of dynamic loading! C++ is a compiled language, not an interpreted
language like Ruby.

Alice: Ah, yes, of course, I’m already beginning to forget what it means to
work with compile cycles in prototyping code!

6.6 Wishful Thinking

Bob: How did you get this idea, of using message passing?

Alice: When I browsed through some Ruby code on the web, I came across
something similar as what I just suggested, and then I realized that that would
be a very natural way of passing instructions between classes.

Bob: Let’s try it! I’ll create yet another file, rknbody5.rb, and see how we can
implement your idea.

Alice: This time, I suggest we start on the level of the Nbody class. In a wishful
thinking sort of way, let us assume that we can tell a Body named b to calculate
something, by issuing a command b.calc(s), where s is a string that will get
executed by b. The forward Euler method would then look like this:

def forward(dt)
@body.each{|b| b.calc(@body,dt," @old_acc = acc(ba) ")}
@body.each{|b| b.calc(@body,dt," @pos += @vel*dt ")}
@body.each{|b| b.calc(@body,dt," @vel += @old_acc*dt ")}

end

Bob: And indeed, with no mention of b anymore within the string that is passed
as the third argument of calc.

Alice: The first two arguments are needed, because otherwise the Body class
will not know what to do with the string: it knows about its own instance
variables such as @pos, and it knows about the method acc, but not about the
argument to acc, which has to be specified explicitly.

Bob: I see. What does ba stand for?

Alice: Body array. When calc executes the call, it will replace ba by its first
argument, @body. Similarly, it will replace dt by dt. I’ll show you in a moment.
I hope it will all work. And I’m pretty sure it will.

6.7 Implementation

Bob: You used the calc method in the middle line of forward as well, even

6.7. IMPLEMENTATION 69

though you could have used the simpler statement

@body.each{|b| b.pos += b.vel*dt}

which we used before, in the previous version.

Alice: Yes, but my intention was to not break the symmetry between the lines.
By treating all of them in the same way, your eye can be guided to what is
different on each line, forgetting the left half of each line, which is the same in
all cases. Here, let me write the other three methods as well, and then it will
become more clear how the actual strings that contain the commands will stand
out:

def leapfrog(dt)
@body.each{|b| b.calc(@body,dt," @vel += acc(ba)*0.5*dt ")}
@body.each{|b| b.calc(@body,dt," @pos += @vel*dt ")}
@body.each{|b| b.calc(@body,dt," @vel += acc(ba)*0.5*dt ")}

end

def rk2(dt)
@body.each{|b| b.calc(@body,dt," @old_pos = @pos ")}
@body.each{|b| b.calc(@body,dt," @half_vel = @vel + acc(ba)*0.5*dt ")}
@body.each{|b| b.calc(@body,dt," @pos += @vel*0.5*dt ")}
@body.each{|b| b.calc(@body,dt," @vel += acc(ba)*dt ")}
@body.each{|b| b.calc(@body,dt," @pos = @old_pos + @half_vel*dt ")}

end

def rk4(dt)
@body.each{|b| b.calc(@body,dt," @old_pos = @pos ")}
@body.each{|b| b.calc(@body,dt," @a0 = acc(ba) ")}
@body.each{|b| b.calc(@body,dt," @pos = @old_pos +

@vel*0.5*dt + @a0*0.125*dt*dt ")}
@body.each{|b| b.calc(@body,dt," @a1 = acc(ba) ")}
@body.each{|b| b.calc(@body,dt," @pos = @old_pos +

@vel*dt + @a1*0.5*dt*dt ")}
@body.each{|b| b.calc(@body,dt," @a2 = acc(ba) ")}
@body.each{|b| b.calc(@body,dt," @pos = @old_pos +

@vel*dt + (@a0+@a1*2)*(1/6.0)*dt*dt ")}
@body.each{|b| b.calc(@body,dt," @vel += (@a0+@a1*4+@a2)*(1/6.0)*dt ")}

end

Bob: It’s an improvement over the first two versions, which used an index i. In
the previous version, we could leave out that obnoxious i index at the expense

70 CHAPTER 6. RETURNING TO SIMPLICITY

of introducing extra variables on the Body level. But now we can have our cake
and eat it: no more i and no more extra variables with Body, I presume.

Alice: Correct! The content of the string effectively will declare the extra
variables for us when the string is evaluated in the Body class. Here is how I
would write the calc method for the Body class:

def calc(body_array, time_step, s)
ba = body_array
dt = time_step
eval(s)

end

Bob: Simplicity itself. I see now what you meant, when you described the way
the two parameters ba and dt were going to be substituted in an actual call to
calc.

Alice: Almost too simple to be true, but I think this is all correct.

6.8 Indirect String Sending

Bob: Shall we move on? Or do you have a suggestion for further improvements?

Alice: I must say that the integration methods still look too cluttered for my
taste. They miss the simple elegance and brevity of expression of our previous
version. For one thing, in that version we did not have to break any statement
up over two lines. What bothers me especially is that for most statements, more
than half of the line gets repeated exactly.

Bob: I wonder whether we can do something about that.

Alice: I think we can. So far, we have introduced a calc function on the
Body level. How about introducing a second calc function on the Nbody level?
Let’s create one more file, rknbody6.rb, in which we give the Nbody class the
following extra method:

def calc(y,s)
@body.each{|b| b.calc(@body,y,s)}

end

Bob: Brevity indeed. I see what you mean. Forward Euler then becomes,
instead of

6.8. INDIRECT STRING SENDING 71

def forward(dt)
@body.each{|b| b.calc(@body,dt," @old_acc = acc(ba) ")}
@body.each{|b| b.calc(@body,dt," @pos += @vel*dt ")}
@body.each{|b| b.calc(@body,dt," @vel += @old_acc*dt ")}

end

which we just wrote, quite a bit shorter as:

def forward(dt)
calc(dt," @old_acc = acc(ba) ")
calc(dt," @pos += @vel*dt ")
calc(dt," @vel += @old_acc*dt ")

end

Alice: Exactly. And the following three methods become:

def leapfrog(dt)
calc(dt," @vel += acc(ba)*0.5*dt ")
calc(dt," @pos += @vel*dt ")
calc(dt," @vel += acc(ba)*0.5*dt ")

end

def rk2(dt)
calc(dt," @old_pos = @pos ")
calc(dt," @half_vel = @vel + acc(ba)*0.5*dt ")
calc(dt," @pos += @vel*0.5*dt ")
calc(dt," @vel += acc(ba)*dt ")
calc(dt," @pos = @old_pos + @half_vel*dt ")

end

def rk4(dt)
calc(dt," @old_pos = @pos ")
calc(dt," @a0 = acc(ba) ")
calc(dt," @pos = @old_pos + @vel*0.5*dt + @a0*0.125*dt*dt ")
calc(dt," @a1 = acc(ba) ")
calc(dt," @pos = @old_pos + @vel*dt + @a1*0.5*dt*dt ")
calc(dt," @a2 = acc(ba) ")
calc(dt," @pos = @old_pos + @vel*dt + (@a0+@a1*2)*(1/6.0)*dt*dt ")
calc(dt," @vel += (@a0+@a1*4+@a2)*(1/6.0)*dt ")

end

72 CHAPTER 6. RETURNING TO SIMPLICITY

6.9 The Same, Yet Different

Bob: I like that: every statement now fits on one line, we don’t have to modify
or extend the Body class when we introduce a new integration scheme, and
we don’t mention the variable @body anymore in each line. I’m satisfied: this
combines all good things in one. And I must say, I’m growing fond of working
with Ruby.

Alice: So do I. Even though I knew that Ruby was a well designed language,
I was a bit skeptical at first about how much that would really buy us. But as
we already have seen, it buys us quite a bit in terms of clarity of expression.
And when writing complicated programs and packages, something we will start
doing soon, clarity of expression is more important than anything else. Nothing
else will allow you to maintain an overview over the whole situation.

However, just one point: you mentioned that the Body class did not need to be
extended. But that is not true. We have extended the Body class by adding a
calc method to i.

Bob: I meant that we don’t have to make a different and separate extension
to the Body class, each time we introduce a new integrator in Nbody. We only
modify Body once, by adding calc, and the same calc will do different things
for different integrators.

Alice: Which means that in practice, dynamically, we are augmenting the Body
class, each time we add an integrator to the Nbody class.

Bob: That is true, but it is invisible as far as the code is concern. If the Body
class would be written in a separate file, that file would not have to be changed,
upon adding an integrator.

Alice: But I thought you didn’t like to cut up our file into, what did you call
it again, ah yes, a plethora of small files.

Bob: Very funny. I’m not really suggesting to split up the file, I just tried to
make a clear point even clearer. But of course we are both right: I am right to
say that the written definition of the Body class remains unchanged, and you are
right if you say that the actual definition, as it is dynamically changed during
execution of the code by the interpreted, does change.

Alice: Right you are! And right I am. Okay, let’s move on.

6.10 Testing

Bob: With all this bickering, we haven’t tested yet any of our latest three
versions. For now, let’s just try the figure-8 triple. I’ll run the first singly-linked
code version again, to make sure we got the right output.

|gravity> ruby rknbody3b_driver.rb < figure8.in

6.10. TESTING 73

dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

And then our version with the extra variables added by hand to the Body class:

|gravity> ruby rknbody4a_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04

74 CHAPTER 6. RETURNING TO SIMPLICITY

-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Good! Now the version that is sending a string from Nbody to Body:

|gravity> ruby rknbody5a_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Also perfect. Finally our last version with the two calc methods:

|gravity> ruby rknbody6a_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088

6.10. TESTING 75

method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Great! It all works.

Alice: That’s very nice. As we already said, almost too good to believe.

76 CHAPTER 6. RETURNING TO SIMPLICITY

Chapter 7

A Final Version

7.1 Clarity

Bob: It was fun to play with so many different versions, but I’m beginning to
get a little confused as to which version did what. Maybe we should pick just
one version, and use that while we add more features and move toward specific
applications.

Alice: I agree. And since we decided not to worry, for now at least, about
performance, let us concentrate on clarity of expression. I must say, I like the
last one best, in file rknbody6.rb, where everything fits on one line. How-
ever, the version where we gave the Body class explicit helper variables, in file
rknbody4.rb, was even shorter.

Bob: Yeah, I did not particularly like the idea of giving this poor Body class all
possible helper variables for all possible application. Even though we discussed
more clever ways to do this, frankly, I don’t care too much what we will choose
in the end. I liked your suggestion to send a command string to be evaluated
dynamical, thereby generating the proper helper variables, mostly because of
its novelty.

Alice: And it goes with the spirit of the times: just-in-time-delivery! But what
I like best about this latest method is that it obeys the DRY principle: we are
not repeating ourselves.

Bob: Apart from the fact that you repeatedly bring up particular principles.

Alice: I’ll repeatedly ignore that. Apart from that point, when clarity is really
the criterion, I am not sure whether the last version is really clearer. Let us
compare the forward Euler algorithm in both cases, in rknbody4.rb:

def forward(dt)
@body.each{|b| b.old_acc = b.acc(@body)}

77

78 CHAPTER 7. A FINAL VERSION

@body.each{|b| b.pos += b.vel*dt}
@body.each{|b| b.vel += b.old_acc*dt}

end

and in rknbody6.rb

def forward(dt)
calc(dt," @old_acc = acc(ba) ")
calc(dt," @pos += @vel*dt ")
calc(dt," @vel += @old_acc*dt ")

end

Bob: The last one is clearly shorter.

Alice: That I don’t mind so much. I’m just not happy with the fact that it is
not clear, for a casual reader, what that variable dt is doing there, as the first
two arguments of calc, and the appearance of ba is also a mystery; there is
no indication here that ba stands for ‘body array’ and will get its value from
@body, somewhere else. In contrast, the earlier version has nothing hidden: the
@body.each{|b| . . . } construct is vanilla flavor for someone familiar
with Ruby.

7.2 Brevity

Bob: Perhaps we can improve the calc method of Nbody further. How about
redefining it in such a way that we can leave out the first argument altogether?

Alice: Ah, that’s a good idea. It is also a logical next step, after introducing
the shortcut notion of sending a string in the first place. Once we do something
that is somewhat dirty and not so self-explanatory, we might as well go all the
way.

Bob: I suppose that we would have to introduce an extra instance variable @dt
for Nbody. Otherwise it will not be possible to remove the first argument dt
from the current calc. In fact, that would make the definition even shorter. So
it would look very clean, like this:

def forward
calc(" @old_acc = acc(ba) ")
calc(" @pos += @vel*dt ")
calc(" @vel += @old_acc*dt ")

end

7.2. BREVITY 79

Note that I have created yet another version of our code, in file rknbody7.rb.

Alice: That is short and sweet, indeed. And we have to modify calc on the
Nbody level from what we had before:

def calc(y,s)
@body.each{|b| b.calc(@body,y,s)}

end

to a version with only one parameter, namely the command string:

def calc(s)
@body.each{|b| b.calc(@body, @dt, s)}

end

Since the other two parameters to the calc method of Body are now both
instance variables, their value is known here.

Bob: What else do we have to change? We have to set the value of the new
variable @dt in the evolve method, and we have to leave out the dt argument
when invoking the integration methods. Two small changes, which leaves us
with evolve looking like this:

def evolve(integration_method, dt, dt_dia, dt_out, dt_end)
nsteps = 0
e_init
write_diagnostics(nsteps)
@dt = dt
t_dia = dt_dia - 0.5*@dt
t_out = dt_out - 0.5*@dt
t_end = dt_end - 0.5*@dt

while @time < t_end
send(integration_method)
@time += @dt
nsteps += 1
if @time >= t_dia
write_diagnostics(nsteps)
t_dia += dt_dia

end
if @time >= t_out
simple_print

80 CHAPTER 7. A FINAL VERSION

t_out += dt_out
end

end
end

7.3 Correctness

Alice: And the only other changes, besides the change in the forward Euler
algorithm we already saw, are the simplified readings of the three other integra-
tors. They now become:

def leapfrog
calc(" @vel += acc(ba)*0.5*dt ")
calc(" @pos += @vel*dt ")
calc(" @vel += acc(ba)*0.5*dt ")

end

def rk2
calc(" @old_pos = @pos ")
calc(" @half_vel = @vel + acc(ba)*0.5*dt ")
calc(" @pos += @vel*0.5*dt ")
calc(" @vel += acc(ba)*dt ")
calc(" @pos = @old_pos + @half_vel*dt ")

end

def rk4
calc(" @old_pos = @pos ")
calc(" @a0 = acc(ba) ")
calc(" @pos = @old_pos + @vel*0.5*dt + @a0*0.125*dt*dt ")
calc(" @a1 = acc(ba) ")
calc(" @pos = @old_pos + @vel*dt + @a1*0.5*dt*dt ")
calc(" @a2 = acc(ba) ")
calc(" @pos = @old_pos + @vel*dt + (@a0+@a1*2)*(1/6.0)*dt*dt ")
calc(" @vel += (@a0+@a1*4+@a2)*(1/6.0)*dt ")

end

Bob: Time to check whether the new code does the same thing as all the older
ones:

7.4. MORE INFORMATION 81

|gravity> ruby rknbody7a_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Alice: And so it does. Good! I think we can stick with this version as our work
horse, for a while at least.

7.4 More Information

Bob: There is one improvement I would like to add. Remember when we were
debugging our code and we were analyzing a single time step, trying to figure
out whether the position and velocity were updated correctly?

Alice: Yes, that was a simple situation, in the case of the forward Euler algo-
rithm, and we could analytically calculate the acceleration.

Bob: Of course, in general we can’t be so lucky, and I would prefer to have an
easy way to ask for an output of the acceleration as well. Ah, come to think of
it, we have this pretty print output version, that we wrote long ago, but that
never used since. Here it is:

def pp # pretty print
print " N = ", @body.size, "\n"

82 CHAPTER 7. A FINAL VERSION

print " time = ", @time, "\n"
@body.each{|b| b.pp}

end

All it does is invoke the pretty print version for each particle:

def pp # pretty print
print to_s

end

which does nothing else but print the Body instance in its standard string form:

def to_s
" mass = " + @mass.to_s + "\n" +
" pos = " + @pos.join(", ") + "\n" +
" vel = " + @vel.join(", ") + "\n"

end

Well, let us just add an extra line for the acceleration. Since pretty print became
pp, a pretty print with extras should be called a ppx:

def ppx(body_array) # pretty print, with extra information (acc)
STDERR.print to_s + " acc = " + acc(body_array).join(", ") + "\n"

end

I will put this version in file rknbody8.rb.

Alice: That makes a lot of sense. You choose the standard error output stream
STDERR because you don’t want this extra debugging information to be mixed
up with the particle output snapshot, which is written on the default standard
output stream, and which can be piped into another program.

And of course, you have to give ppx a parameter, namely the array of all the
particles in the N-body system, otherwise our particle cannot compute the ac-
celeration that it receives from all other particles. Let’s see. This means that
ppx on the Body level must be invoked from the Nbody as:

def ppx # pretty print, with extra information (acc)
print " N = ", @body.size, "\n"
print " time = ", @time, "\n"
@body.each{|b| b.ppx(@body)}

end

7.5. AN INITIAL SNAPSHOT OUTPUT 83

7.5 An Initial Snapshot Output

Bob: Indeed. Now what else is there left to do? We don’t want to have this
extra information all the time, since it would clutter up the output. Let us
introduce a special flag, x flag, a boolean variable that will be set to ‘true’ if
the extra output is desired, and set to ‘false’ when we don’t need it.

This means that the method that writes the diagnostics will now get x flag as
a second parameter, and a few extra lines at the end, to invoke ppx if the flag
is set to be ‘true’:

def write_diagnostics(nsteps, x_flag)
etot = ekin + epot
STDERR.print <<END

at time t = #{sprintf("%g", time)}, after #{nsteps} steps :
E_kin = #{sprintf("%.3g", ekin)} ,\
E_pot = #{sprintf("%.3g", epot)} ,\
E_tot = #{sprintf("%.3g", etot)}

E_tot - E_init = #{sprintf("%.3g", etot - @e0)}
(E_tot - E_init) / E_init = #{sprintf("%.3g", (etot - @e0)/@e0)}

END
if x_flag
STDERR.print " for debugging purposes, here is the internal data ",

"representation:\n"
ppx

end
end

Alice: Now that we are adding features, I would like to have the option to echo
the initial snapshot, the data file that is read in before any integration step is
taken. I know that I can always read that information myself from the input
file, but sometimes it is nice to have it right in front of you, together with the
other data,

Bob: Yes, especially when are debugging and you want to take a single time
step. Okay, let us introduce a second flag init out. If the value of this flag
is ‘true’, we will require an initial output, in the form of a snapshot on the
standard output stream. If the value is ‘false’, we skip the initial output.

We can implement the effects of both flags, x flag and init out, by passing
them as additional parameters to evolve. The modifications to the body of
this method are then very minor. We only have to change three lines. First,
the two calls to write diagnostics acquire x flag as extra parameter, as we
have already seen. Second, we add an extra line

simple_print if init_out

84 CHAPTER 7. A FINAL VERSION

just before we start the while loop. The new version of the evolve method
thus becomes:

def evolve(integration_method, dt, dt_dia, dt_out, dt_end, init_out, x_flag)
nsteps = 0
e_init
write_diagnostics(nsteps, x_flag)
@dt = dt
t_dia = dt_dia - 0.5*dt
t_out = dt_out - 0.5*dt
t_end = dt_end - 0.5*dt

simple_print if init_out

while @time < t_end
send(integration_method)
@time += dt
nsteps += 1
if @time >= t_dia
write_diagnostics(nsteps, x_flag)
t_dia += dt_dia

end
if @time >= t_out
simple_print
t_out += dt_out

end
end

end

Alice: An alternative would have been to make both flags into instance variables
for the Nbody class.

Bob: Yes, that would perhaps look more tidy, giving us fewer arguments to pass
around. Either way, I don’t care very much: most class definitions involve a
trade off between the number of instance variables and the number of arguments
being passed around. I’m happy just to keep them as arguments for now.

7.6 A New Driver

Alice: Let’s make the necessary changes in the driver file as well:

require "rknbody8.rb"

7.7. A FINAL TEST 85

include Math

dt = 0.001 # time step
dt_dia = 2.1088 # diagnostics printing interval
dt_out = 2.1088 # output interval
dt_end = 2.1088 # duration of the integration
init_out = false # initial output requested ?
x_flag = false # extra diagnostics requested ?
##method = "forward" # integration method
##method = "leapfrog" # integration method
##method = "rk2" # integration method
method = "rk4" # integration method

STDERR.print "dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"init_out = ", init_out, "\n",
"x_flag = ", x_flag, "\n",
"method = ", method, "\n"

nb = Nbody.new
nb.simple_read
nb.evolve(method, dt, dt_dia, dt_out, dt_end, init_out, x_flag)

7.7 A Final Test

Bob: All very straightforward indeed: at the end the two extra parameters for
evolve, and above the introduction of the two flags in analogy with the other
parameters. Let’s test it out, to see whether we still get the same results for
our figure out orbit:

|gravity> ruby rknbody8a_driver.rb < figure8.in
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0

86 CHAPTER 7. A FINAL VERSION

(E_tot - E_init) / E_init = -0
at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00
1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

Alice: All is well, clearly. Good! So now we have a version of the code that
is both lean and easy to read on the level of the integrators, and has extra
debugging options. Progress!

Chapter 8

An Eight-Body System

8.1 Setting Up a Cube

Bob: Now that we have settled on a tool for doing N-body simulations, it would
be a pity to stop with three bodies. Let’s try it out on a bunch more particles.

Alice: We haven’t yet written tools for setting up initial conditions, though,
such as a Plummer model, or a King model, or even just a homogeneous sphere
with particles sprinkled in. We will certainly do that later, but starting with
that right know would be too much of a distraction. After all, it was you who
wanted to move on quickly to graphics!

Bob: I agree. Let’s do something really simple then. How about setting up
eight particles on the eight corners of a cube, centered on the origin? We can
start with all particles at rest, and just let them fall toward each other.

Alice: That sounds like a reasonably quick try. But we cannot give them equal
masses, otherwise by symmetry they will all hit each other in the center, at
distance zero from each other, where the inter-particle forces will be infinitely
large.

Bob: Yes, we have to perturb something. Either we can give them equal masses,
and small but different initial velocities, or we can give them zero velocities but
slightly different masses. Let me do the latter. Here are some initial conditions:

8
0
1.0
1 1 1
0 0 0
1.1
1 1 -1

87

88 CHAPTER 8. AN EIGHT-BODY SYSTEM

0 0 0
1.2
1 -1 1
0 0 0
1.3
1 -1 -1
0 0 0
1.4
-1 1 1
0 0 0
1.5
-1 1 -1
0 0 0
1.6
-1 -1 1
0 0 0
1.7
-1 -1 -1
0 0 0

As you can see, I took masses starting from 1.0 with increments of 0.1 for each
next particle as I was walking around the eight corners of the central cube, for
which the edges all have a length of 2.

Alice: The advantage of perturbing the masses, rather than the velocities, is
that you keep the center of mass at rest. In other words, the kinetic energy you
will be measuring, as soon as the particles start moving, will be the energy of
the internal motion only. It will not receive a contribution from the kinetic en-
ergy associated with center-of-mass motion. If you had perturbed the velocities
arbitrarily, that would no longer be true.

8.2 Letting Go

Bob: Let’s guess how long would it take for the particles to reach the center.
The masses are of order unity, the distances also, so the accelerations must also
be of order unity. This would suggest that it would take of order one time unit
for the particles to meet each other. Well, let us ask the computer to tell us
whether it will take them more than one time unit or less.

Alice: Hmm, we should be able to predict that before doing a run. Wasn’t
it John Wheeler, who told us never to do a calculation before you know the
answer? I like his attitude. Relying too much on raw computer power can make
you lazy.

Bob: Lazy is in the eye of the beholder, I guess: it is a lot of work to write a
good computer program, as we both know! But I see your point. It certainly

8.2. LETTING GO 89

doesn’t hurt to try to predict numerical results beforehand, and it makes you
more likely to catch a bug, if things come out differently from what you expected.

Alice: Not only that, it will give you more physical insight into the answer as
well.

Bob: Okay, let’s see whether we can predict the outcome of our particle race
toward the center. I started saying that inter-particle distances were of order
unity. However, the typical distances between particles are actually more like 2,
3 or 3.5, roughly speaking as an approximation for 2, 2

√
(2), 2

√
(3), depending

whether they share an edge, a side, or nothing at all. So the initial accelera-
tion, with inverse square forces, will receive contributions that have a distance
dependence of something like 7(1/3)2, if we take 3 as a typical distance. With
a typical mass being somewhat larger than 1, we do indeed get an acceleration
that is fairly close to 1, between 0.75 and 1.5, I would guess.

Now this means that when you start from rest, and you have a distance to the
center of

√
(3) or roughly 1.7, it will take more than one time unit to arrive at

the center. Of course, nonlinear effects will complicate things, but I don’t think
they will invalidate this simple reasoning so quickly. I’m pretty sure that by
time t = 1, the particles haven’t arrived in the center yet.

Alice: I agree. Okay, we have placed our bets. Let the truth be revealed! And
actually, this would be a good time to use the x flag that we built in to ask
for extra information about accelerations.

Bob: Good idea. Okay, here goes, let’s run things for one time unit:

|gravity> ruby rknbody8b_driver.rb < cube1.in
dt = 0.1
dt_dia = 1
dt_out = 10
dt_end = 1
init_out = false
x_flag = true
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0
for debugging purposes, here is the internal data representation:
mass = 1.0
pos = 1.0, 1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = -0.705795165844984, -0.63811749631532, -0.604278661550489
mass = 1.1
pos = 1.0, 1.0, -1.0
vel = 0.0, 0.0, 0.0

90 CHAPTER 8. AN EIGHT-BODY SYSTEM

acc = -0.725983913601737, -0.658306244072073, 0.556789739777578
mass = 1.2
pos = 1.0, -1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = -0.74617266135849, 0.543139652769499, -0.644656157063995
mass = 1.3
pos = 1.0, -1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = -0.766361409115244, 0.563328400526252, 0.597167235291084
mass = 1.4
pos = -1.0, 1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = 0.515839478753342, -0.718872487342333, -0.685033652577501
mass = 1.5
pos = -1.0, 1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = 0.536028226510095, -0.739061235099086, 0.637544730804591
mass = 1.6
pos = -1.0, -1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = 0.556216974266848, 0.623894643796512, -0.725411148091007
mass = 1.7
pos = -1.0, -1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = 0.576405722023601, 0.644083391553265, 0.677922226318097

at time t = 1, after 10 steps :
E_kin = 12.3 , E_pot = -33 , E_tot = -20.7

E_tot - E_init = 0.000633
(E_tot - E_init) / E_init = -3.05e-05
for debugging purposes, here is the internal data representation:
mass = 1.0
pos = 0.597644451816504, 0.63640287626745, 0.655762419276459
vel = -0.940991555344834, -0.850014228000948, -0.80458017381832
acc = -1.71506911283474, -1.54866562852442, -1.4652605274951
mass = 1.1
pos = 0.585134269661813, 0.624094692341221, -0.682431788577738
vel = -0.973577364186811, -0.881473975864098, 0.743630411318128
acc = -1.79677056984513, -1.62409268319797, 1.36430528840404
mass = 1.2
pos = 0.572566955655305, -0.689897591000862, 0.631297823877706
vel = -1.00651894751619, 0.727233325183985, -0.866662302150037
acc = -1.88087240679652, 1.34171513605627, -1.6115608160994
mass = 1.3
pos = 0.559940111130521, -0.677904296108633, -0.658282111563603
vel = -1.03983780651743, 0.756905613895535, 0.803924789872002
acc = -1.96757353300315, 1.40685742201327, 1.50031839892619

8.3. PASSING THROUGH 91

mass = 1.4
pos = -0.705282791726003, 0.586860755993474, 0.60663858079331
vel = 0.69165870948931, -0.977682574453683, -0.92985560640001
acc = 1.27847519172173, -1.86192287793191, -1.76451307558405
mass = 1.5
pos = -0.693423631896722, 0.574338867566358, -0.633959293898993
vel = 0.720463619202033, -1.01042621662886, 0.86512158769774
acc = 1.33750716238934, -1.94561109813966, 1.64085701293565
mass = 1.6
pos = -0.681529221962402, -0.64167993353146, 0.581767543659952
vel = 0.749410199081073, 0.847120045366664, -0.99430431139073
acc = 1.39673308307382, 1.60737124811481, -1.92531904373592
mass = 1.7
pos = -0.669597957823065, -0.629517535170942, -0.609447786811517
vel = 0.778508588720364, 0.877635982210738, 0.927342131031408
acc = 1.45618251518339, 1.67618202793406, 1.78678060432799
N = 8

time = 0.0
N = 8

time = 1.0

8.3 Passing Through

Alice: And indeed, the particles did not reach the center yet. The first particle,
for example, that started at the right-far-upper corner, at {x, y, z} = {1, 1, 1}
still has positive values for all three position components, and velocity compo-
nents that are all negative, indicating that it is moving toward the center, but
hasn’t quite gotten there yet. It is about half way, judging from the size of the
position components.

Bob: And look, my guestimate for the accelerations was correct too. Going
back to the first snapshot output, typical components for the acceleration at
time zero are 0.6 and 0.7, which means in three dimensions that the magnitude
of the acceleration vector must be something like 0.65

√
(3), say, or about 1.1;

comfortable within my predicted range!

Alice: Yes, well done! And our integrator has behaved well, too, even with the
rather large time step of 0.1 that we have given it. Perhaps this is not surprising,
given that the particles haven’t reached the central crunch yet.

Bob: I bet things won’t go so well for the next time unit. But let’s try and see
what happens:

|gravity> ruby rknbody8c_driver.rb < cube1.in
dt = 0.1

92 CHAPTER 8. AN EIGHT-BODY SYSTEM

dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = true
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0
for debugging purposes, here is the internal data representation:
mass = 1.0
pos = 1.0, 1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = -0.705795165844984, -0.63811749631532, -0.604278661550489
mass = 1.1
pos = 1.0, 1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = -0.725983913601737, -0.658306244072073, 0.556789739777578
mass = 1.2
pos = 1.0, -1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = -0.74617266135849, 0.543139652769499, -0.644656157063995
mass = 1.3
pos = 1.0, -1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = -0.766361409115244, 0.563328400526252, 0.597167235291084
mass = 1.4
pos = -1.0, 1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = 0.515839478753342, -0.718872487342333, -0.685033652577501
mass = 1.5
pos = -1.0, 1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = 0.536028226510095, -0.739061235099086, 0.637544730804591
mass = 1.6
pos = -1.0, -1.0, 1.0
vel = 0.0, 0.0, 0.0
acc = 0.556216974266848, 0.623894643796512, -0.725411148091007
mass = 1.7
pos = -1.0, -1.0, -1.0
vel = 0.0, 0.0, 0.0
acc = 0.576405722023601, 0.644083391553265, 0.677922226318097

at time t = 2, after 20 steps :
E_kin = 1.58e+03 , E_pot = -4.79 , E_tot = 1.57e+03

E_tot - E_init = 1.6e+03

8.4. CONVERGENCE 93

(E_tot - E_init) / E_init = -76.9
for debugging purposes, here is the internal data representation:
mass = 1.0
pos = -3.02971661137991, -2.24193089826656, -2.25919153274194
vel = -4.87425095159097, -3.66549478896126, -3.74246308641192
acc = 0.0606083601111188, 0.0515883922084716, 0.0733897970440225
mass = 1.1
pos = -4.31240799333488, -3.10616175910087, 3.14764781958622
vel = -6.86534163590612, -5.02388641613739, 5.35062470064063
acc = 0.0615581909052363, 0.0415529106299662, -0.0445228494603485
mass = 1.2
pos = -1.62568960640959, 3.34494098204815, -1.6622442836446
vel = -2.3870995554365, 5.56374518497225, -2.53222993754156
acc = 0.00462833018233916, -0.139148363026155, 0.101906470797269
mass = 1.3
pos = -1.50564040892264, 1.27774837383927, 0.881834075119233
vel = -2.08881245118275, 2.16684233579503, 1.29915422585319
acc = -0.0179375991256231, -0.0112123628543447, -0.0971526926290998
mass = 1.4
pos = 2.32076951856892, -4.11004315117335, -4.08236760983636
vel = 3.97924211487247, -6.25425810387294, -6.25833469237557
acc = -0.0488286812931284, 0.0362709826406403, 0.0495677416334056
mass = 1.5
pos = 2.94056101577017, -5.90875150100682, 5.68060097022845
vel = 4.91294310127069, -8.99490408184316, 8.88351464915947
acc = -0.0382215840668386, 0.0318234057191825, -0.0300100124207618
mass = 1.6
pos = 6.9881569489367, 11.4122398477483, -16.2293505526342
vel = 11.1558374351108, 17.787395714252, -24.9415505085132
acc = -0.00580613947864572, -0.00923780971388437, 0.0119874756627306
mass = 1.7
pos = -5.15261441447721, -2.6227584261269, 13.1802716803286
vel = -7.5197594733857, -3.83125593317898, 20.3231933860916
acc = 0.0143675680082912, 0.000307955710085254, -0.0376257105250154
N = 8

time = 0.0
N = 8

time = 2.0

8.4 Convergence

Alice: A veritable numerical explosion! Look, the total energy has changed
from a negative value around -20 to an enormously large positive value. So

94 CHAPTER 8. AN EIGHT-BODY SYSTEM

much for energy conservation. Clearly we’ll have to try a much smaller time
step.

Bob: At least the particles have passed through the center, as you can see from
the particles that reversed the signs of the values of the components of their
position vectors – although some of the particles seem to have gone of in almost
random directions, with great speed. Okay, let’s make the time step a hundred
times smaller. We did start off with a rather unrealistically large time step
value, after all.

Alice: And let’s cut down on the output for now, showing only the energy
errors for a few runs. If we give a large value, say 10, for the snapshot output
interval, no snapshot will appear during our run. Here we go again:

|gravity> ruby rknbody8d_driver.rb < cube1.in
dt = 0.001
dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 2000 steps :
E_kin = 2.35e+03 , E_pot = -7.15 , E_tot = 2.35e+03

E_tot - E_init = 2.37e+03
(E_tot - E_init) / E_init = -114

Bob: Still a disaster. Well, these particle energy errors have little meaning, of
course, once they are larger than the original energy values. So we have no way
of knowing how much smaller we’ll have to make the time step. Let’s just try a
time step value that is a factor ten smaller.

|gravity> ruby rknbody8e_driver.rb < cube1.in
dt = 0.0001
dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :

8.4. CONVERGENCE 95

E_kin = 0 , E_pot = -20.7 , E_tot = -20.7
E_tot - E_init = 0

(E_tot - E_init) / E_init = -0
at time t = 2, after 20000 steps :
E_kin = 65.3 , E_pot = -86.1 , E_tot = -20.7

E_tot - E_init = -0.00705
(E_tot - E_init) / E_init = 0.00034

Alice: Much better already! It seems that we’re finally converging. But I’d like
to be sure. How about a time step that is smaller yet, by a factor two:

|gravity> ruby rknbody8f_driver.rb < cube1.in
dt = 5.0e-05
dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 40000 steps :
E_kin = 76.7 , E_pot = -97.5 , E_tot = -20.7

E_tot - E_init = -0.000228
(E_tot - E_init) / E_init = 1.1e-05

Bob: Convergence declared. Good! Normally, a fourth-order integrator should
get a factor 16 more accurate when you half the time step, so this is very
satisfactory.

96 CHAPTER 8. AN EIGHT-BODY SYSTEM

Chapter 9

Softening

9.1 Close Encounters

Alice: I’m very glad to see that we can integrate eight bodies in a cold collapse
system. This is quite a bit more demanding than integrating a handful of bodies
in a virialized system. However, in both cases, sooner or later there will be close
encounters between two or more of the particles. Our code will never be able
to handle all of those close encounters. No matter how small a time step we
give it, sooner or later there will be particles that approach each other closely
enough to have a near miss that takes less time than the time step size. This
will necessarily lead to large numerical errors.

Bob: This is of course why people have introduced variable time steps, as well
as a whole order set of algorithmic tools to tame the unruly behavior of particles
that get too close to the inverse square singularities of Newtonian gravity.

Alice: Soon we will introduce those extensions in our codes, but for now, there
are more urgent things on our agenda. I guess we just have to live with it, and
make sure the students realize that this first N-body tool is not to be trusted
under all circumstances.

Bob: Hmm. I don’t much like the idea of giving someone a tool that cannot be
trusted. How about adding softening, as an option?

Alice: You mean to soften the potential, from an inverse square law to a form
that remains finite in the center?

Bob: Indeed. We start from the singular Newtonian potential energy between
two particles with positions ri and rj and masses Mi,Mj :

U(ri, rj) = G
MiMj

|rj − ri|
(9.1)

97

98 CHAPTER 9. SOFTENING

The standard softening approach is to replace this by a regular variant, simply
by adding the square of a small quantity ε:

U(ri, rj , ε) = G
MiMj

(|rj − ri|2 + ε2)1/2
(9.2)

When you differentiate this modified potential with respect to the position of a
particle, you obtain a modified acceleration:

d2

dt2
ri = G

N∑

j=1
j 6=i

Mj
rj − ri

(|rj − ri|2 + ε2)3/2
(9.3)

And of course, in the limit that ε → 0, this last equation again returns to the
Newtonian gravitational acceleration.

9.2 Fuzzy-Point Particles

Alice: Yes, this is what is often used in collisionless stellar dynamics, to suppress
the effect of close encounters. I can’t say I’m very happy with this softening
approach, since it’s not the real thing. It is purely a mathematical trick, to
avoid numerical problems.

Bob: Well, you can give it a physical interpretation. Instead of using point
particles, which are not very physical in the first place, each particle gets a
more extended mass distribution. In fact, you can easily show that a softened
potential corresponds to a mass distribution given by a polytrope of index five,
better known as a Plummer mass distribution:

ρ(r) ∝ 1
(r2 + ε2)5/2

(9.4)

Alice: But look, your mass distribution stretches all the way to infinity! Even
though most of the mass in concentrated in a small region, with a radius of order
the softening length ε. You solution works, in the sense of avoiding singularities,
and it gives a roughly reasonable answer, but it does come at the cost of smearing
each particle all over space.

Bob: It would be quite easy to use a different mass distribution, corresponding
a finite support. This is what people so who work with SPH particles, for
example. However, for or current purpose, the main thing is to provide a tool
that works, and we can worry later about aesthetic details.

Alice: Okay. Even though I can’t say I’m very happy with it, I see your point,
and it is certainly safer to give the students a tool that is guaranteed to give
finite answer.

9.3. A NEW DRIVER 99

Bob: It should be easy to add softening to our code. Time to create another
version for our N-body code! So we will call this new file rknbody9.rb. Well,
this will take me a while.

Alice: Okay, I’m way behind in reading the astro-ph abstracts. This will give
me a chance to catch up. I’ll come back when I’ve gone through them.

9.3 A New Driver

Bob: Here it is, the new version of our N-body code, now with softening build
in. It was quite straightforward to make the changes. First of all, here is the
new driver:

require "rknbody9.rb"

include Math

eps = 0
dt = 0.001 # time step
dt_dia = 2.1088 # diagnostics printing interval
dt_out = 2.1088 # output interval
dt_end = 2.1088 # duration of the integration
init_out = false # initial output requested ?
x_flag = false # extra diagnostics requested ?
##method = "forward" # integration method
##method = "leapfrog" # integration method
##method = "rk2" # integration method
method = "rk4" # integration method

STDERR.print "eps = ", eps, "\n",
"dt = ", dt, "\n",
"dt_dia = ", dt_dia, "\n",
"dt_out = ", dt_out, "\n",
"dt_end = ", dt_end, "\n",
"init_out = ", init_out, "\n",
"x_flag = ", x_flag, "\n",
"method = ", method, "\n"

nb = Nbody.new
nb.simple_read
nb.evolve(method, eps, dt, dt_dia, dt_out, dt_end, init_out, x_flag)

As you can see, minimal differences, contained in three lines. The method
evolve has an extra parameter, eps, the softening length. The default value is

100 CHAPTER 9. SOFTENING

zero, which means no softening at all. The third new line is where the value of
eps is echoed on the standard error stream.

Alice: So now evolve has eight parameters. At some point we may want to
think about grouping them together, perhaps creating a class for them, since
there is clear substructure: two flags controlling the amount of output, three
variables giving intervals between output times, and three other variables.

Bob: But not now.

Alice: Not now, no. Can you show me the code itself?

9.4 A Code with Softening

Bob: Here it is. Almost all changes speak for themselves.

require "vector.rb"

class Body

attr_accessor :mass, :pos, :vel

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

def calc(softening_parameter, body_array, time_step, s)
ba = body_array
dt = time_step
eps = softening_parameter
eval(s)

end

def acc(body_array, eps)
a = @pos*0 # null vector of the correct length
body_array.each do |b|
unless b == self
r = b.pos - @pos
r2 = r*r + eps*eps
r3 = r2*sqrt(r2)
a += r*(b.mass/r3)

end
end
a

end

9.4. A CODE WITH SOFTENING 101

def ekin # kinetic energy
0.5*@mass*(@vel*@vel)

end

def epot(body_array, eps) # potential energy
p = 0
body_array.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r + eps*eps)

end
end
p

end

def to_s
" mass = " + @mass.to_s + "\n" +
" pos = " + @pos.join(", ") + "\n" +
" vel = " + @vel.join(", ") + "\n"

end

def pp # pretty print
print to_s

end

def ppx(body_array, eps) # pretty print, with extra information (acc)
STDERR.print to_s + " acc = " + acc(body_array, eps).join(", ") + "\n"

end

def simple_print
printf("%24.16e\n", @mass)
@pos.each{|x| printf("%24.16e", x)}; print "\n"
@vel.each{|x| printf("%24.16e", x)}; print "\n"

end

def simple_read
@mass = gets.to_f
@pos = gets.split.map{|x| x.to_f}.to_v
@vel = gets.split.map{|x| x.to_f}.to_v

end

end

class Nbody

attr_accessor :time, :body

102 CHAPTER 9. SOFTENING

def initialize
@body = []

end

def evolve(integration_method, eps, dt, dt_dia, dt_out, dt_end,
init_out, x_flag)

@dt = dt
@eps = eps
nsteps = 0
e_init
write_diagnostics(nsteps, x_flag)
t_dia = dt_dia - 0.5*dt
t_out = dt_out - 0.5*dt
t_end = dt_end - 0.5*dt

simple_print if init_out

while @time < t_end
send(integration_method)
@time += dt
nsteps += 1
if @time >= t_dia
write_diagnostics(nsteps, x_flag)
t_dia += dt_dia

end
if @time >= t_out
simple_print
t_out += dt_out

end
end

end

def calc(s)
@body.each{|b| b.calc(@eps, @body, @dt, s)}

end

def forward
calc(" @old_acc = acc(ba,eps) ")
calc(" @pos += @vel*dt ")
calc(" @vel += @old_acc*dt ")

end

def leapfrog
calc(" @vel += acc(ba,eps)*0.5*dt ")
calc(" @pos += @vel*dt ")

9.4. A CODE WITH SOFTENING 103

calc(" @vel += acc(ba,eps)*0.5*dt ")
end

def rk2
calc(" @old_pos = @pos ")
calc(" @half_vel = @vel + acc(ba,eps)*0.5*dt ")
calc(" @pos += @vel*0.5*dt ")
calc(" @vel += acc(ba,eps)*dt ")
calc(" @pos = @old_pos + @half_vel*dt ")

end

def rk4
calc(" @old_pos = @pos ")
calc(" @a0 = acc(ba,eps) ")
calc(" @pos = @old_pos + @vel*0.5*dt + @a0*0.125*dt*dt ")
calc(" @a1 = acc(ba,eps) ")
calc(" @pos = @old_pos + @vel*dt + @a1*0.5*dt*dt ")
calc(" @a2 = acc(ba,eps) ")
calc(" @pos = @old_pos + @vel*dt + (@a0+@a1*2)*(1/6.0)*dt*dt ")
calc(" @vel += (@a0+@a1*4+@a2)*(1/6.0)*dt ")

end

def ekin # kinetic energy
e = 0
@body.each{|b| e += b.ekin}
e

end

def epot # potential energy
e = 0
@body.each{|b| e += b.epot(@body, @eps)}
e/2 # pairwise potentials were counted twice

end

def e_init # initial total energy
@e0 = ekin + epot

end

def write_diagnostics(nsteps, x_flag)
etot = ekin + epot
STDERR.print <<END

at time t = #{sprintf("%g", time)}, after #{nsteps} steps :
E_kin = #{sprintf("%.3g", ekin)} ,\
E_pot = #{sprintf("%.3g", epot)} ,\
E_tot = #{sprintf("%.3g", etot)}

E_tot - E_init = #{sprintf("%.3g", etot - @e0)}

104 CHAPTER 9. SOFTENING

(E_tot - E_init) / E_init = #{sprintf("%.3g", (etot - @e0)/@e0)}
END

if x_flag
STDERR.print " for debugging purposes, here is the internal data ",

"representation:\n"
ppx

end
end

def pp # pretty print
print " N = ", @body.size, "\n"
print " time = ", @time, "\n"
@body.each{|b| b.pp}

end

def ppx # pretty print, with extra information (acc)
print " N = ", @body.size, "\n"
print " time = ", @time, "\n"
@body.each{|b| b.ppx(@body, @eps)}

end

def simple_print
print @body.size, "\n"
printf("%24.16e\n", @time)
@body.each{|b| b.simple_print}

end

def simple_read
n = gets.to_i
@time = gets.to_f
for i in 0...n
@body[i] = Body.new
@body[i].simple_read

end
end

end

9.5 Details

Alice: Even though the changes may speak for themselves, I have some ques-
tions. First of all, the value of eps has to be passed on from the driver, where
it is defined, through evolve into Nbody and then down to the methods within
Body that do all the hard work.

9.5. DETAILS 105

Bob: First of all, I gave the Nbody class an extra instance variable, @eps, which
stores the value of the softening. As soon as evolve is executed, within the
Nbody class, the first thing it does is assign the proper value to @eps, as well as
to @dt, as was done already in our previous version:

@dt = dt
@eps = eps

Alice: I see. In that way, you don’t have to give an extra argument to the inte-
gration methods, for example: they can just pick up the value of the softening
length from @eps, to which they have automatic access, as Nbody class methods.
But of course they do have to pass that value down to the particles, which are
realized as instances of the Body class, since otherwise the particles would not
know what softening to use.

Bob: The one thing I didn’t like very much is that the lines in the integration
methods have become somewhat longer. Forward Euler, for example, has grown
now from:

def forward
calc(" @old_acc = acc(ba) ")
calc(" @pos += @vel*dt ")
calc(" @vel += @old_acc*dt ")

end

to:

def forward
calc(" @old_acc = acc(ba,eps) ")
calc(" @pos += @vel*dt ")
calc(" @vel += @old_acc*dt ")

end

I’m not too happy with the fact that acc now has to get a second argument.
But that’s the way it is.

If I really would want to make the lines shorter, I could use shorter variables
than ba and eps, for example a and e. But let us not spend more time on such
niceties, which give us diminishing return in clarity at the cost of making the
code more complex and hence less clear.

Alice: I fully agree. Instead, let’s see how your new code performance in our
cold collapse experiment.

106 CHAPTER 9. SOFTENING

Chapter 10

Cold Collapse with
Softening

10.1 Check

Alice: It’s probably a good idea to try our standard check with the figure-8
three-body system, just to make sure that with zero softening we get the same
results as before.

Bob: Yes, I agree. Here we go:

|gravity> ruby rknbody9a_driver.rb < figure8.in
eps = 0
dt = 0.001
dt_dia = 2.1088
dt_out = 2.1088
dt_end = 2.1088
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2.109, after 2109 steps :
E_kin = 1.21 , E_pot = -2.5 , E_tot = -1.29

E_tot - E_init = -2e-15
(E_tot - E_init) / E_init = 1.55e-15

3
2.1089999999998787e+00

107

108 CHAPTER 10. COLD COLLAPSE WITH SOFTENING

1.0000000000000000e+00
-1.6047303546488470e-04 -1.9320664965417420e-04
-9.3227640249930266e-01 -8.6473492670753516e-01
1.0000000000000000e+00
9.7020367429337440e-01 -2.4296620300772800e-01
4.6595057278750124e-01 4.3244644507801255e-01
1.0000000000000000e+00
-9.7004320125790211e-01 2.4315940965738195e-01
4.6632582971180025e-01 4.3228848162952316e-01

10.2 Large Softening

Alice: Good. Now let’s try the same cold collapse as before, but with a softening
length of, say, 0.1. At the beginning of their free fall, the particles will almost
feel the same forces as they did before. Let us compare it with the run that had
a time step of 0.001. For that case we had a horrible lack of energy conservation.
Your softened code should do a lot better.

Bob: Okay, let us see:

|gravity> ruby rknbody9b_driver.rb < cube1.in
eps = 0.1
dt = 0.001
dt_dia = 2
dt_out = 2
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 2000 steps :
E_kin = 48.1 , E_pot = -68.8 , E_tot = -20.7

E_tot - E_init = -1e-05
(E_tot - E_init) / E_init = 4.84e-07

8
1.9999999999998905e+00
1.0000000000000000e+00
-2.3357068379703563e+00 -1.5730462500735882e+00 -1.8373515169655967e+00
-3.2503099351457405e+00 -2.2769160097020231e+00 -2.7623089808977994e+00
1.1000000000000001e+00

10.3. EVEN LARGER SOFTENING 109

-1.4462439521294790e+00 -7.9274043868280397e-01 1.9462651835363280e+00
-1.5388550025735492e+00 -8.5033761684692111e-01 2.7987214535075422e+00
1.2000000000000000e+00
-8.4361749490035387e-01 1.8870481468897002e+00 -7.5123041488377962e-01
-5.2602892044713823e-01 2.5585640337825617e+00 -6.5671580935516860e-01
1.3000000000000000e+00
1.6304345239074072e-01 5.8421169904952219e-01 4.1153090918721674e-01
1.3842631574595166e+00 -5.2283176060070413e-01 -5.2052114949956041e-01
1.3999999999999999e+00
3.0263433758971969e-01 -1.2126952329091388e-01 5.4757741932432893e-02
-2.2026773446067907e+00 -1.0870392845510134e-01 -2.4523203993014261e-01
1.5000000000000000e+00
5.7619765613623819e-01 -1.4294804330220603e-01 -9.1132984353013688e-02
-1.0609857121621187e+00 -1.6441584074724240e+00 -9.9518893248749163e-01
1.6000000000000001e+00
5.5584843594067390e-01 -3.6360342031389209e-01 -2.0891409427520066e-01
2.3016236123480418e+00 1.1615617212579910e+00 -5.4794699774267885e-01
1.7000000000000000e+00
5.5859860985306420e-01 -2.4288669549678879e-01 3.3674893916023442e-02
2.8043365345598055e+00 9.3036246676969148e-01 2.2713384109628652e+00

Alice: Great! Very well behaved. And indeed most particles have just passed
through the center, as is clear from their position components, and are contin-
uing to move on, as their velocity components indicate.

But wait a minute, the energy E tot at time t = 0 is the same as before. How
can that be? When we change the potential, there should at least be some
change in the value of the initial total energy.

Bob: Ah, but the particles are all separated by at least 2 length units from each
other. Since the softening always comes in through an expression containing
r2 + ε2, we have to check the difference between 22 and 22 +(0.1)2. The latter is
only a quarter of a percent larger than the former. And for most particle pairs
the difference is much smaller still, so the total difference is likely to be more
like a tenth of a percent, too small to show up within the accuracy with which
we print out the energy.

10.3 Even larger softening

Alice: just to make sure, let us take a softening length of 0.3. According to
your analysis, that would show a difference in the initial total energy, right?

Bob: I would think so. Okay, let’s try:

|gravity> ruby rknbody9c_driver.rb < cube1.in

110 CHAPTER 10. COLD COLLAPSE WITH SOFTENING

eps = 0.3
dt = 0.001
dt_dia = 2
dt_out = 2
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.6 , E_tot = -20.6

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 2000 steps :
E_kin = 19.9 , E_pot = -40.5 , E_tot = -20.6

E_tot - E_init = -6.68e-09
(E_tot - E_init) / E_init = 3.25e-10

8
1.9999999999998905e+00
1.0000000000000000e+00
-1.3435332524361765e+00 -1.3215614066272325e+00 -1.3349638266570156e+00
-1.6912633178958605e+00 -1.8593451296223482e+00 -1.9880447778358679e+00
1.1000000000000001e+00
-1.1428786019621284e+00 -1.1455131430342225e+00 1.2256328116240207e+00
-1.1933788723000605e+00 -1.3945830515013942e+00 1.8622141170854261e+00
1.2000000000000000e+00
-9.2565210028918554e-01 1.0727125108268556e+00 -9.6980727607605521e-01
-6.6075234951751749e-01 1.5546315810261460e+00 -1.0191929255321155e+00
1.3000000000000000e+00
-6.7586116933868967e-01 8.5050524262812943e-01 8.0855082812733969e-01
-5.1962467791243423e-02 1.0021841594452070e+00 7.8942187688433141e-01
1.3999999999999999e+00
7.4446049432842354e-01 -4.9008095056780804e-01 -5.0941448582820292e-01
8.6641095431182236e-01 4.6983803735978924e-01 3.8723066728293609e-01
1.5000000000000000e+00
5.2586784274845078e-01 -1.9076507421867578e-01 3.0256970789252191e-01
3.7062049124660296e-01 1.3593990088399948e+00 -9.4199154209711755e-01
1.6000000000000001e+00
3.4351961512732321e-01 1.1579367694820625e-01 8.9914604762325170e-02
2.1678167378492888e-01 -1.3136771019591300e+00 1.4926999954472413e+00
1.7000000000000000e+00
3.5848465570332533e-01 1.0335593797758784e-01 -1.0889250629570488e-01
1.0286337376548356e+00 -2.1764660039138783e-01 -8.1239017296188831e-01

Alice: Good! I’m glad to see that.

Bob: Yes, it never hurts to check.

10.4. SMALL SOFTENING 111

Alice: And it hurts a lot if you don’t check, and run into mysterious problems
later.

10.4 Small Softening

Bob: Let’s see how far we can push it. How about a softening length of 0.01?
And let me suppress the snapshot output for now:

|gravity> ruby rknbody9d_driver.rb < cube1.in
eps = 0.01
dt = 0.001
dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 2000 steps :
E_kin = 227 , E_pot = -804 , E_tot = -577

E_tot - E_init = -556
(E_tot - E_init) / E_init = 26.8

Alice: Not too surprising. With velocities of order unity, and a softening
length that is only ten times larger than the time step, a typical particle will
step through the core of the potential of another particle in only a few steps.

Bob: And when doing so, the particle will be sped up already to velocities
typical well above unity, leaving even fewer integration steps during which the
attraction between the particles changes dramatically. In fact, when they ap-
proach each other to a distance of order 0.01, there speed will be at least 10 in
our units, and probably larger than that. Two particles may pass each other
through their softening radius in even less than one time step.

So yes, it would have been worrisome if the errors would not have been large.
Let me use a ten times smaller time step:

|gravity> ruby rknbody9e_driver.rb < cube1.in
eps = 0.01
dt = 0.0001
dt_dia = 2

112 CHAPTER 10. COLD COLLAPSE WITH SOFTENING

dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 20000 steps :
E_kin = 87.4 , E_pot = -108 , E_tot = -20.7

E_tot - E_init = -0.00458
(E_tot - E_init) / E_init = 0.000221

Alice: That’s more like it. Actually, not so different from what we found earlier,
without softening.

Bob: I guess this means that our eight particles did not come much closer to
each other than distances of order 0.01.

Alice: Which is reasonable. In three dimensions there are two independent
directions in which two approaching particles can miss each other, and you have
to aim carefully to come really close.

Bob: Let me make the time step half as small again, just to check whether the
error in the energy conservation drops by at least a factor of sixteen:

|gravity> ruby rknbody9f_driver.rb < cube1.in
eps = 0.01
dt = 5.0e-05
dt_dia = 2
dt_out = 10
dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -20.7 , E_tot = -20.7

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 40000 steps :
E_kin = 101 , E_pot = -122 , E_tot = -20.7

E_tot - E_init = -0.000141
(E_tot - E_init) / E_init = 6.81e-06

Alice: I think we can declare victory.

10.5. CENTRAL COLLAPSE 113

10.5 Central Collapse

Bob: Ah, let’s do something fun, something we never could have done without
softening. Let us give all particles equal masses, so that when they drop from
the corners of the cube, they all will reach each other at the center. Even so,
softening should keep them from misbehaving.

Alice: As you like!

Bob: So these are the new initial conditions:

8
0
1
1 1 1
0 0 0
1
1 1 -1
0 0 0
1
1 -1 1
0 0 0
1
1 -1 -1
0 0 0
1
-1 1 1
0 0 0
1
-1 1 -1
0 0 0
1
-1 -1 1
0 0 0
1
-1 -1 -1
0 0 0

And this is the result:

|gravity> ruby rknbody9b_driver.rb < cube2.in
eps = 0.1
dt = 0.001
dt_dia = 2
dt_out = 2

114 CHAPTER 10. COLD COLLAPSE WITH SOFTENING

dt_end = 2
init_out = false
x_flag = false
method = rk4
at time t = 0, after 0 steps :
E_kin = 0 , E_pot = -11.4 , E_tot = -11.4

E_tot - E_init = 0
(E_tot - E_init) / E_init = -0

at time t = 2, after 2000 steps :
E_kin = 8.54 , E_pot = -19.9 , E_tot = -11.4

E_tot - E_init = -4.77e-05
(E_tot - E_init) / E_init = 4.19e-06

8
1.9999999999998905e+00
1.0000000000000000e+00
-5.7041409218602102e-01 -5.7041409218602102e-01 -5.7041409218602102e-01
-8.4345690649961835e-01 -8.4345690649961835e-01 -8.4345690649961835e-01
1.0000000000000000e+00
-5.7041409218602102e-01 -5.7041409218602102e-01 5.7041409218602102e-01
-8.4345690649961835e-01 -8.4345690649961835e-01 8.4345690649961835e-01
1.0000000000000000e+00
-5.7041409218602090e-01 5.7041409218602102e-01 -5.7041409218602102e-01
-8.4345690649961791e-01 8.4345690649961835e-01 -8.4345690649961835e-01
1.0000000000000000e+00
-5.7041409218602102e-01 5.7041409218602102e-01 5.7041409218602102e-01
-8.4345690649961835e-01 8.4345690649961835e-01 8.4345690649961835e-01
1.0000000000000000e+00
5.7041409218602102e-01 -5.7041409218602090e-01 -5.7041409218602090e-01
8.4345690649961835e-01 -8.4345690649961791e-01 -8.4345690649961791e-01
1.0000000000000000e+00
5.7041409218602102e-01 -5.7041409218602102e-01 5.7041409218602090e-01
8.4345690649961835e-01 -8.4345690649961835e-01 8.4345690649961791e-01
1.0000000000000000e+00
5.7041409218602090e-01 5.7041409218602090e-01 -5.7041409218602102e-01
8.4345690649961791e-01 8.4345690649961791e-01 -8.4345690649961835e-01
1.0000000000000000e+00
5.7041409218602102e-01 5.7041409218602102e-01 5.7041409218602102e-01
8.4345690649961835e-01 8.4345690649961835e-01 8.4345690649961835e-01

Alice: Well behaved indeed. Glad to see it all works!

Chapter 11

Literature References

[to be provided]

115

