
The Art of Computational Science

The Kali Code

vol. 9

Initial Conditions:

Plummer’s Model

Piet Hut and Jun Makino

July 11, 2005

Contents

Preface 7

0.1 Acknowledgments . 8

1 A Simple Equilibrium Model 9

1.1 Time Scales . 9

1.2 Initial Conditions . 11

1.3 A Potential-Density pair . 12

1.4 Density . 14

1.5 Physical Interpretations . 16

2 A Minimal Code 19

2.1 A Classic Recipe . 19

2.2 Classes . 20

2.3 Where the Work is Done . 21

2.4 The Driver . 23

2.5 The Basic Idea . 24

2.6 Sprinkling Particles in Space . 26

2.7 Populating Velocity Space . 27

3 Sprinkling Particles in Space 29

3.1 Choosing a Distance . 29

3.2 Following the Recipe . 30

3.3 Cumulative Mass . 31

3.4 Physical Intuition . 33

3.5 An Intuitive Derivation . 34

3

4 CONTENTS

3.6 A Formal Derivation . 35

4 Populating Velocity Space 39

4.1 Choosing a Velocity . 39

4.2 A Meta-Recipe . 40

4.3 Following the Recipe . 42

4.4 A Rejection Technique . 42

4.5 Distribution Function . 44

4.6 The Density as a Projection . 45

4.7 A Change of Variables . 47

4.8 Deprojecting the Density . 48

5 Getting the Physics Right 51

5.1 An Analytic Recipe . 51

5.2 The Full Form . 53

5.3 Dimensional Analysis . 53

5.4 Getting The Details Right . 54

5.5 From Implicit to Explicit . 56

5.6 Abel Integral Transforms . 57

6 Getting the Math Right 59

6.1 A Mathematical Proof . 59

6.2 The Problem . 60

6.3 The Answer . 61

6.4 All the Way . 63

6.5 Q.E.D. 64

6.6 The End of Let-Then . 65

7 Energy Checks 69

7.1 More Modular . 69

7.2 Repeatability . 70

7.3 Energy Diagnostics . 72

7.4 Measurements . 74

7.5 Two Roads . 76

CONTENTS 5

7.6 One Destination . 77

7.7 Potential Energy . 79

7.8 Validation . 80

8 Quartile Checks 83

8.1 Quartiles . 83

8.2 Coding . 84

8.3 Code . 85

8.4 Testing . 86

8.5 Checking the Math . 88

8.6 Checking the Code . 90

8.7 Checking the Code-Checking Code 91

9 Standard Units 95

9.1 Confusion . 95

9.2 A Standard . 96

9.3 Motivation . 97

9.4 Approximations . 99

9.5 Three Round Numbers . 100

9.6 Surface Density . 101

9.7 More Round Numbers . 103

10 Two More Code Versions 105

10.1 Standard Units . 105

10.2 Checking Quartiles . 106

10.3 Checking Energy . 108

10.4 Quiet Start . 109

10.5 Quiet Indeed . 110

11 Centering 115

11.1 Center of Mass Adjustment . 115

11.2 Implementation . 116

11.3 A Bit Disquieting . 117

11.4 Checking the One-Body Problem 118

6 CONTENTS

11.5 Checking the Two-Body Problem 120

12 Scaling 123

12.1 Units Adjustment . 123

12.2 Implementation . 125

12.3 Treating Even the Vacuum . 126

12.4 Bells and Whistles . 127

12.5 Checking the Output . 129

12.6 Checking the Energy . 131

13 Literature References 135

Preface

This whole volume is dedicated to a detailed study of Plummer’s model. We
could have called it ‘Plummer for dummies,’ because the explanations and
derivations given here are far more extensive than is usually the case in text
books. Even so, the prefered type of ‘dummies’ are those that are happy to
learn about Abel integral equations and stuff like that.

We present all results in such an easy-going style, that you don’t even need pen
and paper to follow the argument. The main reason for this approach is that
we want to be realistic in presenting the discussion as a dialogue. Whereas text
books often state that ‘it can be easily seen that’, in practice it may well take
quite a while, and a number of pages of paper, before the reader finally has seen
what was supposed to be easy. In contrast, when two people talk in front of a
blackboard, or bend over a note pad, they don’t follow such a clinical approach.
They are more likely to write things out in long-hand, and that is exactly what
our main characters do in this volume.

The main purpose for treating Plummer’s model with such respect is that it
forms a convenient example for showing how to construct models in phase space.
Building a structure in six dimensions, rather than three, is something that you
have to get used to. By the time you are really experienced doing so, it is easy to
forget how counter-intuitive it probably looked, the first time you gave it a try.
Our approach here is to present much of the theoretical argumentation that goes
into model building not in an abstract way, but rather with the concrete example
of Plummer’s model, and specifically with the even more concrete question: here
is a computer screen, and here is the key board, now sit down and create a star
cluster.

It is this hands-on approach that Alice and Bob continue to pursue, as they have
done in all previous volumes. In future volumes, they will no doubt come back
to construct King models, as well as anisotropic and multi-mass generalizations.
They will be able to move along much faster in those cases, having mastered
the main principles while juggling Plummer’s model. We hope you will enjoy
the beauty and elegance of what is the most venerable star cluster model, with
a history spanning now more than 120 years.

7

8 CONTENTS

0.1 Acknowledgments

Besides thanking our home institutes, the Institute for Advanced Study in
Princeton and the University of Tokyo, we want to convey our special gratitude
to the Yukawa Institute of Theoretical Physics in Kyoto, where this volume was
written, during a visit in June 2004, made possible by the kind invitations to
both of us by Professor Masao Ninomiya.

We thank Shawn Slavin for his comments on the manuscript.

Piet Hut and Jun Makino

Kyoto, July 2004

Chapter 1

A Simple Equilibrium
Model

1.1 Time Scales

Alice: Hi Bob, I guess we are now getting close to do some real stellar dynamics
of star clusters!

Bob: I just had the same thought. We now have a real N-body code, and it is
high time that we use it for what it is designed to do: to follow the evolution of
a collisional star system.

Alice: I prefer to avoid the term ‘collisional,’ it is just too misleading. Students
will think that it implies real physical collisions between stars.

Bob: But it is an old and established term. It won’t be easy to avoid it. But I
agree, it is misleading. It only means that two-body encounters are important.
In other words, two-body relaxation plays an important role in collisional sys-
tems, whereas you can neglect such relaxation effects in collisionless systems. In
yet other words, in collisional systems, there is a significant heat flow through
the system.

Alice: Yes. In stellar evolution they talk about a thermal time scale, like the
Kelvin-Helmholtz time scale, a hundred million years or so for a star like the
sun. This is the time scale at which a star will lose most of its energy from its
surface, if the energy would not be replenished by nuclear reactions in the core
of the star. In contrast, the dynamical time scale for a star like the sun is only
a couple hours. This is the time it takes a star to ‘ring’, like a drum: the time
to cross the star at the speed of sound.

Bob: That is a nice analogy. For a star cluster the dynamical time is called the
crossing time. The speed of sound in a star cluster, like in a gas of molecules,

9

10 CHAPTER 1. A SIMPLE EQUILIBRIUM MODEL

is of the order of the speed of the constituent particles.

For a typical globular cluster, with half-mass radius of the order of 10 parsec,
and a velocity dispersion of order 10 km/sec, the crossing time is of order a
million years – more than a billion times larger than the dynamical time scale
for a typical star.

But the thermal time scale for a globular cluster, the time to redistribute the en-
ergy through the collective effects of the diffusion caused by two-body relaxation,
is not that much larger than that of the sun: typical values for globular clusters
are a billion years, only a factor ten larger than the Sun’s Kelvin-Helmholtz
time scale.

Alice: Coming back to the term ‘collisional stellar dynamics’, I wonder why
gravitational encounters were called ‘collisions.’ One reason may be the analogy
with molecular diffusion, where the van der Waals forces between molecules drop
off so fast with distance that the only significant encounters are the ones where
the molecules practically touch. Also, many of the early simulations of star
cluster evolution were Monte Carlo simulations, and there the effects of two-
body relaxation are modeled as discrete scattering events, with each star going
its own merry way until scattered into a different orbits – like molecules in a
gas.

Bob: Another reason may have been the fact that there was no competition
for the term ‘collisions’: it was only in the nineteen-nineties that people had
enough computer power to begin to treat collisions between stars in a serious
and quantitative way. Back in the sixties, when they talked about collisional
stellar dynamics, stars were not supposed to collide, because computers were
not up to it yet.

Alice: You may have a point there. In any case, I prefer the term ‘dense
stellar systems’ for star systems where encounters are important. Whether the
encounters are merely gravitational or also involve occasional physical collisions
is less important a distinction.

Bob: Someone else could argue that having collisions or not is the most funda-
mental distinction. Certainly someone specializing in hydrodynamics is likely
to think so. I guess you just betrayed your bias to stellar dynamics. Oh well,
classification will also cause heated debates.

Alice: Which I’d rather avoid. Anyway, we’re setting out to simulate dense
stellar systems, and we know that they have the tendency to show the effects
of two-body relaxation: mass segregation, escapers, core collapse, all that good
stuff.

Bob: Now that we have an N-body code, let’s put up a good show!

1.2. INITIAL CONDITIONS 11

1.2 Initial Conditions

Alice: But every show needs a stage that needs to be set up first. What shall
we choose for the initial conditions.

Bob: There are many options. Basically, we can just sprinkle particles into a
more or less localized region, an in a few crossing times the initial transients
will die down. The remaining system, after the fast particles have escaped, will
then slowly undergo core collapse.

So we could start with a homogeneous sphere, with a constant density out to a
certain radius, and zero density outside that radius. We could give the particles
velocities in accord with the virial theorem, or we could even give each star zero
velocity: from such a cold collapse, too, you quickly will get a damped remnant,
and you will loose less than half of the particles.

Alice: True, but all those solutions ar not very elegant. Besides, there is no
good reason to pick one over the other. But what is worse, I don’t like to mix the
transient dynamical effects with the longer-lasting thermal effects. Remember,
for a star cluster with a hundred thousand stars there is not much more than
a factor of a thousand difference between the crossing time and the two-body
relaxation time. And if we want to play with small simulations of only a few
hundred stars, the ratio goes down to ten or less. I much prefer to start with a
system that is already in dynamic equilibrium to start with.

Bob: Well, we could start with a King model.

Alice: That would be much better, yes, but still we would have to pick a
number, such as the central concentration or the depth of the potential well in
dimensionless units, in order to settle upon a particular King model, given that
there is a one-dimensional family of models.

Bob: What would you prefer?

Alice: How about good old Plummer’s model?

Bob: That one? But that’s not very realistic!

Alice: At this point I don’t care too much about how realistic our simulations
will be, if you mean with realistic that the distribution of stars will resemble
that of a globular cluster. First of all, Plummer’s model does do a reasonable
job of fitting some of the more loose clusters, those with a large core radius.

After all, Plummer got his name attached to the Schuster model, in 1911, be-
cause he showed that it could be used well to fit the observed cluster data
available at that time. While he specifically referred to Schuster’s 1883 publica-
tion, in which the model was first derived, it is called Plummer’s model because
of the astrophysical relevance. Sure, we can do better now, but in 1911 Ivan
King wasn’t even born yet. And you could still travel around in Europe without
the need of a passport.

Bob: Those were the days, I suppose. But your choice of N-body simulations

12 CHAPTER 1. A SIMPLE EQUILIBRIUM MODEL

were limited to N = 2. I’m glad I’m alive now.

Alice: What I like about Plummer’s model, in comparison to King Models,
is that: 1) it is one well-defined model, rather than a whole family of models,
so that if two people simulate Plummer’s model, they know that they talk
about the exact same model; 2) it is a simple model, where everything can
be expressed in terms of analytic expressions, which is not the case for King
models; 3) most of the venerable early investigations of star cluster dynamics
started with Plummer’s Model for the initial conditions, so it is easy to make a
connection with the literature.

Bob: From an educational point of view, yes, all three aspects carry some
weight. But on the other hand, I always like to introduce students quickly
to the more dirty nitty-gritty of actual research. And certainly nowadays you
will find far more star cluster simulations starting from King Models than from
Plummer’s model.

Alice: Okay, let’s do both. But if so, it really does make sense to start with
Plummer’s model. Since everything can be done analytically, the students will
get more of a direct insight into what is going on. After that, we can move on
to King models, and whatever else we will find time for.

Bob: Fine with me, since I don’t feel as strongly about it as you seem to do.
Where shall we start? It would be good to give the students a brief handout
with some of the basic facts of Plummer’s model. All that I remember about
it is that a particle that acquires softening morphs from a point particle with a
delta function mass distribution to that of Plummer’s model.

Alice: Ah, Great! I knew there was a fourth point I could have mentioned to
argue for Plummer’s model as a favorite starting point: students are likely to al-
ready have encountered it without reflecting on it, when they have implemented,
or at least used, particles with a softened potential. Thank you!

Bob: You’re welcome, even though you didn’t need a point 4), since I had
already given in. Okay, let me write down what I remember and what I can
easily derive. You, as a champion of Plummer’s model, can then add whatever
analytic elegance you like.

Alice: Go right ahead!

1.3 A Potential-Density pair

Bob: Okay. A model that is in dynamical equilibrium is defined by a potential-
density pair that corresponds to a distribution function in phase space that is
time-independent. I would have to scratch my head a bit, in fact quite a bit
more than a bit, to remember how you derive the distribution function for a
given potential-density pair, to show that an equilibrium solution exists.

Alice: We definitely have to prove that, but let’s leave that for later.

1.3. A POTENTIAL-DENSITY PAIR 13

Bob: Good! There is only so much I can do from scratch.

Alice: But you have to define what you mean with a distribution function. For
a star cluster, it is the density of stars in phase space.

Bob: Yes. Okay, here is the softened potential:

Φ(r) = −GM
1

(r2 + a2)1/2
(1.1)

Dr. Schuster’s softened star system, for short, as you just told us, aka Dr.
Plummer’s patented potential. And now we have to call upon Dr. Poisson to
provide us with the density that corresponds to this potential.

Alice: But first you have to remind the students of the symmetry assumptions
that go into this type of construction.

Bob: Ah yes. We assume spherical symmetry in space, in other words, both
potential Φ(r) and density ρ(r) only depend on the distance to the center r,
independent of the spherical angles θ, φ:

Φ(r) = Φ(r) ; (1.2)

ρ(r) = ρ(r). (1.3)

In addition, we assume that the velocity dispersion is isotropic. In general,
spherical symmetry in configuration space (or position space) still allows cylin-
drical symmetry in velocity space: the distribution function must be a function
of energy per unit mass E and angular momentum per unit mass J . However,
by insisting on isotropy we assert spherical symmetry in velocity space as well,
which implies:

f(E, J) = f(E). (1.4)

By the way, the potential Φ(r) is also the potential energy per unit mass – just
like the potential in an electrostatic field, where it is the binding energy per unit
charge. To be really specific, take a star with mass m at a a position in a star
cluster at a distance r from the center. In order to let that star escape from
the cluster, you have to give it a kinetic energy Ekin = 1

2mv2 that is exactly
equal to the binding energy of that star with respect to the cluster, namely the
absolute value of the potential energy of that star corresponding to its position
in the gravitational well of the cluster: |Epot| = m |Φ(r)| = −mΦ(r).

So this means that the escape velocity for a star at radial distance r from the
center of the cluster can be derived as follows:

1
2mv2

esc + mΦ(r) = 0 ⇒ vesc(r) =
√
−2Φ(r) (1.5)

14 CHAPTER 1. A SIMPLE EQUILIBRIUM MODEL

Alice: Good idea to make that very clear, since when you talk about potential
and potential energy, it is at first quite easy to get confused between the potential
energy of the cluster as a whole and between that of individual particles with
respect to the rest of the cluster.

Bob: Well, we don’t want to get confused, do we.

Alice: Aha, if you put it that way, I can’t resist pointing out another possible
confusion. When you wrote down the condition for isotropy, you were right,
speaking as a physicist, although a mathematician looking over your shoulder
would be greatly confused. Using the same symbol for two expressions that have
a different functional form, and what is worse, even have a different number of
parameters is definitely a no-no in mathematics.

Bob: But what else could I have written but f(E, J) = f(E) ?

Alice: A proper mathematical expression would have been f̂(E, J) = f(E),
for example. This would imply that f̂ as a function is very different from the
function f . The only connection is that for any choice of a particular value for
E and a particular value for J , the relationship f̂(E, J) = f(E) would hold,
independently of the value of J .

Bob: Hmm. I prefer to say f(E, J) = f(E). That makes sense and it feels
good. As Janis Joplin would have said ‘feeling good is good enough for me.’

Alice: It shows you’re a physicist. Just be gentle with the occasional student
who may think deeper about these issues than you; she or he may actually have
a very good reason to be bothered by the usual glossing over of these questions.
After all, it is easy to make mistakes – for example, mistakes in normalization,
if you’re not careful about what depends in which way on what.

Bob: I suppose you would have wanted me to put hats on the first two equations
as well: ρ̂(r) = ρ(r) and Φ̂(r) = Φ(r).

Alice: Strictly speaking, yes, but once you have made that point, I prefer to
then drop the hats, for simplicity.

Bob: Is that called having you cake and eating it, first confusing me by first
putting a hat on, and then dropping your hat?

Alice: Maybe that’s where the expression ‘I’ll eat my hat’ comes from.

1.4 Density

Bob: No comment. Let me go on, and derive the density, given the potential.

To find the density needed to generate a potential, all we have to do is to solve
Poisson’s equation, which in spherical coordinates, under the assumption of
spherical symmetry for the potential, takes the relatively simple form

1.4. DENSITY 15

1
r2

d

dr

(
r2 d

dr
Φ(r)

)
= 4πGρ(r) (1.6)

Working out the derivatives, this boils down to:

d2

dr2
Φ(r) +

2
r

d

dr
Φ(r) = 4πGρ(r)

It is straightforward to work out the first derivative

d

dr
Φ(r) = GM

r

(r2 + a2)3/2

and the second derivative of the potential

d2

dr2
Φ(r) = GM

{
1

(r2 + a2)3/2
− 3r2

(r2 + a2)5/2

}

= GM
−2r2 + a2

(r2 + a2)5/2

Putting it all together we get:

ρ(r) =
1

4πG

{
d2

dr2
Φ(r) +

2
r

d

dr
Φ(r)

}

=
M

4π

{
−2r2 + a2

(r2 + a2)5/2
+

2

(r2 + a2)3/2

}

=
M

4π

3a2

(r2 + a2)5/2
(1.7)

Alice: It might have been a bit quicker to substitute Φ(r), given in eq. (1.1),
directly in eq. (1.6).

Bob: Probably. But I like to be systematic, and it was nice to get the force on
a unit mass, −dΦ(r)/dr, for free.

So now we can also see what the physical interpretation was of the softened
particles that we have been using occasionally: the potential–density pair of a
softened point particle is Plummer’s pair:

16 CHAPTER 1. A SIMPLE EQUILIBRIUM MODEL





Φ(r) = −GM
1

(r2 + a2)1/2

ρ(r) =
3M

4π

a2

(r2 + a2)5/2

(1.8)

Alice: That looks right. It has the right dimensions: energy for Φ and mass
per cubic length, in other words, mass divided by volume for ρ.

Bob: To get more of a feeling for the behavior of these two functions, I find it
helpful to factor out the radial distance squared in units of the structural length
a squared:





Φ(r) = − GM

a

(
1 +

r2

a2

)−1/2

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

(1.9)

or the opposite: the inverse radial distance squared in units of the structural
length squared:





Φ(r) = − GM

r

(
1 +

a2

r2

)−1/2

ρ(r) =
3Ma2

4πr5

(
1 +

a2

r2

)−5/2
(1.10)

1.5 Physical Interpretations

Alice: Yes, that makes it easy to see immediately how the functions behave for
small and for large radii. In fact, to bring out the physics even more, I suggest
that for your first choice, you introduce the central potential Φo = Φ(0) and the
central density ρo = ρ(0):





Φ(r) = Φo

(
1 +

r2

a2

)−1/2

ρ(r) = ρo

(
1 +

r2

a2

)−5/2

(1.11)

with

1.5. PHYSICAL INTERPRETATIONS 17





Φo = − GM

a

ρo =
3M

4πa3

(1.12)

It is then clear right away how the softening works: instead of the infinitely deep
potential well of a point mass, the bottom of the well corresponds to the surface
potential of an object with mass equal to the total mass of the particle, and
radius equal to the structural length. Similarly, the central density is exactly
the density that such an object would have. It is nice that it all corresponds
to such a simple picture, not only in order of magnitude, but even without any
correction factor. That makes it easy to remember the formulas in this way.

Bob: Ah, yes, that is an even nicer way to write things. But I don’t like to
remember formulas, easy or not! As long as I keep my notes, I can always
quickly look them up.

Alice: Or, in practice, rederive them. Don’t try to make me believe that you,
a), actually keep all your notes, and, b), have a way to find them when you need
them!

Bob: Hmmm, well, yes, I’m afraid I often fail in both.

Alice: So do I, and most anyone I know. Actually, this in itself is already a
good reason for us to write these notes out in book form, as we have started
doing. And the more detail, the better: I hate having to spend a few pages of
pen and paper work in order to get from one line to the next in a text book.
Back in the days that printed paper was expensive, that might have been a
good thing, but I prefer to save time, rather than paper. Actually, we’re saving
paper too, when we just put it all up on the net. So let’s keep these notes, in
full detail, just the way we’re deriving it, in real time.

Bob: Fine with me. And I must admit, since we started writing these notes,
I’ve gone back to them already several times, to look up things that I knew I
knew just a few weeks ago, but which already had started to slip out of my
working memory.

Coming back to your recasting of the potential-density expressions, I suppose
we can do something similar for my second choice, but there we are dealing with
quantities at infinity, for which the a2/r2 vanishes.

Alice: Indeed, but instead of constants, we are now dealing with functions,
basically because we cannot reach infinity, while we can reach the center, at
zero distance. What you have factored out are the asymptotic behaviors of the
function when you go out to very large radii;

18 CHAPTER 1. A SIMPLE EQUILIBRIUM MODEL





Φ(r) = Φ∞(r)
(

1 +
a2

r2

)−1/2

ρ(r) = ρ∞(r)
(

1 +
a2

r2

)−5/2

(1.13)

What you have defined, effectively, are the asymptotic form of the potential
Φ∞(r) as the Kepler potential of a point mass, and the asymptotic form of the
density ρ∞(r) as the leading power law function, proportional to the inverse
fifth power of the radius:





Φ∞(r) = − GM

r

ρ∞(r) =
3Ma2

4πr5

(1.14)

Bob: I thought I had done something interesting, even though I was mainly
doodling, enjoying the equations I had derived by looking at them from different
directions. But pretty as they may be, I feel it’s time to actually construct a
model along Plummer’s line. Let me see what I can do, before we next see each
other again.

Chapter 2

A Minimal Code

2.1 A Classic Recipe

Alice: Did you start building a star cluster, using Plummer’s model as a
blueprint?

Bob: Yes, here is a quick and dirty version that I cobbled together. It was a
lot easier than I expected, since I stumbled upon a nice recipe, which must be a
classic in stellar dynamics. I followed it line by line, in my implementation. It
was published in the paper A comparison of Numerical Methods for the Study of
Star Cluster Dynamics, by Sverre Aarseth, Michel Henon, and Roland Wielen,
which appeared ages ago, in 1974, in Astron. Astroph. 37, 183.

Alice: I remember reading that paper as a student.

Bob: You are that ancient?

Alice: Not quite. I must have just started high school at that time. I mean that
I read it as an undergraduate when I wanted to do a small N-body project for
my final thesis. My adviser recommended it. And indeed, it was an influential
paper by some of the masters in the field, around that time.

I remember it well: the paper made the first detailed quantitative comparison
between the Monte-Carlo Fokker-Plank method and direct N-body integration.
They even showed the results for runs with a few hundred particles. Hard to
believe that they got so much compute done, given the slow speed of computers
at that time.

Bob: That is impressive, given that computers have increased their speed by
a factor ten every five years or so. That means that in 2004 computers are a
million times faster than what they had available. I bet that my camera is a lot
more powerful than the computers in their university centers.

Alice: And I’m sure your camera has way more storage as well. But what was

19

20 CHAPTER 2. A MINIMAL CODE

actually most impressive was how much information they were able to squeeze
out of their calculations, given their limited resources. Anyway, why did you
bring up this paper?

Bob: Because it contains a nifty recipe for constructing a Plummer’s model.

Alice: Hey, I didn’t remember that. Really?

Bob: They wrote it as an appendix. Everything was done analytically, except
for the fact that they used a rejection technique at the last step, to get the
velocities.

Alice: I must not have looked at the appendix. Well, that is convenient. Can
you show me your code?

2.2 Classes

Bob: Here it is, and I warned you, I haven’t commented it or cleaned it up: I
just translated their recipe straight from the appendix into Ruby.

There are three parts to the file mkplummer1.rb. The first part contains the
class definitions. It is rather short, since I realized I could do everything with
stripped-down versions of the Body class and the Nbody class:

require "acs"

class Body

attr_accessor :mass, :pos, :vel

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

end

class NBody

attr_accessor :time, :body

def initialize(n = 0)
@body = []
for i in 0...n
@body[i] = Body.new

end
end

2.3. WHERE THE WORK IS DONE 21

end

Alice: That all looks familiar. So you only need to create an N-body system,
and then print it out.

2.3 Where the Work is Done

Bob: Indeed. The actual work is done here:

include Math

def frand(low, high)
low + rand * (high - low)

end

def mkplummer(n, seed)
if seed == 0
srand

else
srand seed

end
nb = NBody.new(n)
nb.body.each do |b|
b.mass = 1.0/n
radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)
theta = acos(frand(-1, 1))
phi = frand(0, 2*PI)
b.pos[0] = radius * sin(theta) * cos(phi)
b.pos[1] = radius * sin(theta) * sin(phi)
b.pos[2] = radius * cos(theta)
x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)
theta = acos(frand(-1, 1))
phi = frand(0, 2*PI)
b.vel[0] = velocity * sin(theta) * cos(phi)
b.vel[1] = velocity * sin(theta) * sin(phi)
b.vel[2] = velocity * cos(theta)

22 CHAPTER 2. A MINIMAL CODE

end
STDERR.print " actual seed used\t: ", srand, "\n"
nb.acs_write

end

The mkplummer method takes two arguments: n, which is the number of stars in
our star cluster, and seed, which is the seed for the random number generator.

If you want to create a different model, each time you invoke mkplummer, you
can choose seed = 0. That will invoke srand without any argument, as you
can see from the first two lines. Ruby guarantees that such a call to srand will
return a different seed each time.

However, if you do want to reproduce the same result, you can give a specific
seed by choosing seed = k, where k is a positive integer. Calling srand with
that number will actually use that seed. This will be useful when you are
debugging the mkplummer code itself, or when you are debugging another code,
that takes the mkplummer results as input.

I’m a bit puzzled about one thing, though: the manual tells me that the call
srand 0 would have the same effect as calling srand with nu arguments. This
would suggest that I could replace the first four lines of mkplummer by

srand seed

without having to include the if...else... statements. However, when I did
that, I got the same result each time. Well, perhaps my manual is outdated. In
any case, with this construction, it worked.

After seeding the random number generator, I create a new N-body system with
n particles, and then I enter a loop, in which I initialize each of those particles
in turn.

Alice: Let’s look at that loop later. I would like to see the overall structure of
the code first.

Bob: Okay: after the loop finishes for the last particle, I print out the random
number seed that was used, as a check to make sure that we can later recreate
the same model realization.

Alice: Why would you do that? You already gave the seed value as an argu-
ment.

Bob: If I give a positive value, then indeed this is superfluous. But if I give a
seed value of zero, the system chooses a pseudo-random seed for me. And if I
would not echo the seed, I would not be able to reproduce the run later on.

Alice: I see. But why do you call srand again in the print statement?

Bob: Because Ruby tells me that the value that srand returns is the value of
the previous seed. Don’t ask why. It is defined that way. So by calling srand

2.4. THE DRIVER 23

again, I get the value of the seed that I have to give the next time, in order
to reproduce the previous run, even if at that time I gave a value zero for the
second argument of mkplummer. It works: I tested it out.

Alice: I take your word for it. Can you show me how you invoke mkplummer?

2.4 The Driver

Bob: Here it is:

options_text= <<-END

Description: Plummer’s Model Builder
Long description:
This program creates an N-body realization of Plummer’s Model.
(c) 2004, Piet Hut and Jun Makino; see ACS at www.artcompsi.org

The algorithm used is described in Aarseth, S., Henon, M., & Wielen, R.,
Astron. Astroph. 37, 183 (1974).

Short name: -n
Long name: --n_particles
Value type: int
Default value: 1
Variable name: n
Print name: N
Description: Number of particles
Long description:
Number of particles in a realization of Plummer’s Model.

Each particles is drawn at random from the Plummer distribution,
and therefore there are no correlations between the particles.

Physical Units are used in which G = M = a = 1, where
G is the gravitational constant
M is the total mass of the N-body system
a is the structural length, with potential U(r) = GM/(r^2 + a^2)^{1/2}

Short name: -s
Long name: --seed
Value type: int
Default value: 0

24 CHAPTER 2. A MINIMAL CODE

Description: pseudorandom number seed given
Print name:
Variable name: seed
Long description:
Seed for the pseudorandom number generator. If a seed is given with
value zero, a preudorandom number is chosen as the value of the seed.
The seed value used is echoed separately from the seed value given,
to allow the possibility to repeat the creation of an N-body realization.

Example:

|gravity> kali mkplummer1.rb -n 42 -s 0
. . .
pseudorandom number seed given : 0

actual seed used : 1087616341
. . .
|gravity> kali mkplummer1.rb -n 42 -s 1087616341
. . .
pseudorandom number seed given : 1087616341

actual seed used : 1087616341
. . .

END

c = parse_command_line(options_text)

mkplummer(c.n, c.seed)

It is mostly command line argument parser, using our nifty new Clop class based
parser. It contains the ‘here document’ that defines the options, followed first
by the command parse command line that does what it says it does, and then
by the command mkplummer.

2.5 The Basic Idea

Alice: Let us now look at the inner loop of mkplummer, where each particle
is given its initial values for its mass, position, and velocity. The first line is
simple:

b.mass = 1.0/n

Each particle acquires a mass that is 1/n: you are creating an equal-mass sys-
tem, where the total mass is normalized to be unity.

2.5. THE BASIC IDEA 25

Bob: Indeed. It would be possible to give a mass spectrum, of course, but
that can be done later, when we are ready for that. For now, I just wanted to
construct a minimal model.

Alice: Fair enough. Then you pick values for position and velocity components.
What is the basic idea here?

Bob: The idea is to proceed in two steps. You start by sprinkling particles in
space, as a random realization of the mass density distribution of Plummer’s
model. This means that you have to be careful to determine the radial position
of the particles with the right statistical weight. Because of spherical symmetry,
the angles can be randomly chosen from a two-dimensional spherical surface.

The second step is to give each particle a velocity with a random direction
and a magnitude that is also random, but drawn from the appropriate velocity
distribution at that point in space.

Alice: In order words, you really are sprinkling particles into phase space,
the six-dimensional space that is the direct product of configuration space and
velocity space.

Bob: Yes, but even though you can look at phase space as a single six-
dimensional space, that still leaves the fact that there is the three-by-three
structure left for the two quite different subspaces.

What I mean is: you have to start by picking an appropriately random point
in what you call configuration space, and what is normally just called ‘space’,
containing all possible positions in three dimensions. Only after you know the
position of a particle in that subspace, can you determine the potential energy
of that particle. And only when you know the potential energy, can you know
what type of velocities are admissible, in order to keep the particle bound and
to give each velocity the correct statistical weight.

In order words, the order of picking a point in configuration space, and then
picking a point in velocity space, is important: you couldn’t do it the other way
around.

Alice: Ah, that must correspond to what mathematicians mean when they call
the velocity space the tangent bundle to the configuration space. Each point
in configuration space has its own tangent space, and it is only because we
work in Newtonian flat space that we can pretend that phase space is a single
six-dimensional space, shared by all particles.

Bob: Whatever. Enough mathematical terms! Let me show you how the parti-
cles get sprinkled into normal space first, and how we then populate the velocity
space. In practice, rather than doing all the configuration space sprinkling first,
followed by a second loop in which we populate velocity space, I find it easier
to do everything in one loop. For each particle I determine the three position
coordinates, and with that information I can then immediately give the three
velocity coordinates.

26 CHAPTER 2. A MINIMAL CODE

2.6 Sprinkling Particles in Space

Alice: Okay, lets look at configuration space first. I see that you invoke some
magical expression to determine the value of the radius:

radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)

Bob: Yes, this is part of the recipe provided by Aarseth et al., for choosing
a correctly randomized radius, the distance of the star from the center of the
star cluster.

Alice: Let’s look at that in a moment, after we’ve gone through the body of the
loop first. Given the value for radius, I see that you assign the three Cartesian
coordinates of the star in the usual way from spherical coordinates radius,
theta, and phi:

b.pos[0] = radius * sin(theta) * cos(phi)
b.pos[1] = radius * sin(theta) * sin(phi)
b.pos[2] = radius * cos(theta)

Bob: Yes, and randomizing the two angular coordinates was relatively simple.
The value for φ, for example, is a random number between 0 and 2π, since every
azimuthal angle is equally likely:

phi = frand(0, 2*PI)

By the way, here I have adapted the Ruby defined random number call rand in
the following way, by defining a general floating point version frand:

def frand(low, high)
low + rand * (high - low)

end

Since rand returns a value uniformly distributed throughout the range {0, 1},
frand(a,b) returns a value uniformly distributed throughout the range {a, b}.
Alice: And this is how you initialize the angle theta between the positive z
axis and the position vector of your star:

theta = acos(frand(-1, 1))

Bob: To pick a random value for θ, we have to make sure that the spherical
integration element sin θdθ gets an equal weight for any θ value. In other words,
any value for d (cos θ) should be equally likely.

2.7. POPULATING VELOCITY SPACE 27

Now the highest and lowest values occur for θ = 0, along the positive z axis,
and for θ = π, along the negative z axis. So cos θ runs from +1 to −1.

All we have to do is to pick a floating point number at random, somewhere in
the interval {−1, +1}. Let’s call the number x. This determines a number y
defined as y = arccos x. By construction, the value of cos y = cos(arccos x) = x
is uniformly random, as was desired for θ. Hence y has the right distribution of
values for θ, and we can simply take θ = y.

Alice: It sounds complicated when you say it in words, but I see what you
mean. Indeed, that must be correct.

Bob: I sometimes think that anything to do with probability gets more confus-
ing when you try to talk about it. Easy to fool others, and to fool yourself for
that matter. No wonder people talk about lies, damn lies, and statistics!

2.7 Populating Velocity Space

Alice: Moving right along, we now come across something really mysterious:

x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)

Bob: Yeah, and fun too. But since you postponed a discussion of the proper
weighting function for choosing the radial position, we should also postpone
a discussion of what goes on here. Briefly, I am using a rejection technique,
following Aarseth et al. in order to determine the magnitude velocity of the
velocity vector, in the last line above.

Alice: Okay, I’m happy to wait till later. Now in the next lines you repeat
the same spherical distribution trick you applied in order to find the position
coordinates.

Bob: Indeed, and this gives me the velocity coordinates.

Alice: You could have put those five lines into a separate method. Remember
the DRY principle: don’t repeat yourself.

Bob: Good point. Let me do that in the next version of this code. This is
a rather minimal one, and I can think already of several improvements. For
example, we may want to recenter the center of mass of the star cluster we have
created onto the center of the coordinates. We can also dampen some of the
fluctuations we are introducing by layering the particles more evenly in radial

28 CHAPTER 2. A MINIMAL CODE

bins, rather than sprinkling every particle in space, independently of any other
particle.

Alice: That’s fine: I also like to start with a minimal script, so that we can
really test and understand its behavior, before we start adding bells and whistles.
Testing the first version of a new code is half the work. Once you have one well-
tested version, you can use that as comparison material, to check with each new
addition whether that still reproduces the old result. The hardest work is to
get an initial result, and to make sure that it is correct.

Chapter 3

Sprinkling Particles in
Space

3.1 Choosing a Distance

Alice: Now I understand what your code is doing, except for a few crucial lines.
First there is the one-liner about choosing the distance between a new star and
the center of the star cluster:

radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)

Can you tell me what this expression means, and how it is derived? It must
somehow be related to the density distribution ρ(r), which you have already
derived from the potential. How exactly do Aarseth, Henon and Wielen use the
density for particle sprinkling?

Bob: They describe their technique in a few words, and I had to read those
words carefully, and do some head scratching, to figure out what it meant. But
as always, once you see it, it is really easy. Let me try to summarize it in my
own words.

First we introduce the cumulative mass distribution

m(r) =
∫ r

0

4πr2ρ(r)dr (3.1)

which is the amount of mass that is included within the star cluster inside a
distance r from the center. When we create a new star, and place it at radius
r, that star will have m(r) of the mass of the cluster at positions closer to the
center, and M − m(r) of the mass at positions further from the center.

29

30 CHAPTER 3. SPRINKLING PARTICLES IN SPACE

In other words, it will see a fraction m(r)/M of the total mass inside its radial
position. Now that fraction could be anything between 0 and 1. It will be 0 if
the particle is placed exactly in the center, and it will approach 1 if the particle
is placed very far away, reaching 1 when the particle is placed at infinity.

The ranking of each particle, in terms of the enclosed mass, is random and
uniform in the mass fraction. In other words, m(r)/M will be a random value
between 0 and 1, with each value equally likely.

So here is the idea: spin a random number generator in order to obtain a
a random number mi, with 0 ≤ mi ≤ M , and we consider that to be the
fractional mass contained within the radius ri of particle i. So all we know is
that m(ri) = mi, but what we need to know is ri itself. So the procedure is to
invert (3.1) to obtain a function r(m), and then life is simple: ri = r(mi).

3.2 Following the Recipe

Alice: That sounds straightforward. Can you show me the expressions you
found for m(r) and r(m) ?

Bob: I simply took their expressions. They use a system of units in which
the total mass M, the gravitational constant G and the structural length scale
a that we used above are all unity. The mass enclosed within a radius r then
becomes:

m(r) = r3
(
r2 + 1

)−3/2
(3.2)

and the radius that corresponds to a mass fraction becomes:

r(m) =
(
m−2/3 − 1

)−1/2

(3.3)

As you can see in the second line of the inner loop in my mkplummer method,
this is how I determine the radial position of each particle, using Ruby’s random
number generator rand:

radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)

Alice: Hmm. You didn’t check whether they had done their math correctly?

Bob: No need to. This is a paper by Aarseth, Henon, Wielen. Besides, it is
thirty years old and has been cited zillions of times by others. I’m sure this is
a result that can be trusted.

Alice: I don’t like to accept things on trust, no matter what the authority may
be behind it. Not that I expect them to be wrong, I agree that that would be
highly improbable. Still, I would feel much better to derive the results ourselves.

3.3. CUMULATIVE MASS 31

Besides, if we work it out now, we can both use those notes when we have to
teach it in class to the student. Better still, we just put it into the material we
prepare for them on the web.

Bob: Okay, if you like. Your turn, though, I already derived the density. Do
you want to use a package from symbolic integration? Differentiation is easy
enough by hand, but I must admit, I’m a bit rusty in my integration.

3.3 Cumulative Mass

Alice: So am I, and that is exactly a reason to do it with pen and paper,
tempting as it is to use a symbolic package. Okay. I’ll start with the density
you derived:

ρ(r) =
M

4π

3a2

(r2 + a2)5/2
(3.4)

By definition, this gives us for the cumulative mass, as a function of radius:

m(r) =
∫ r

0

4πr2ρ(r)dr

=
∫ r

0

3M

a3
r2

(
1 +

r2

a2

)−5/2

dr (3.5)

The variable r appears in the integrand only in terms of the combination r2/a2,
so a natural change of variables is:

x =
r2

a2
⇒ r = a

√
x ⇒ dr =

a

2
dx√

x
⇒

which gives us:

m(r) =
3M

a3

∫ r2/a2

0

(a2x)(1 + x)−5/2 a

2
dx√

x

=
3M

2

∫ r2/a2

0

x1/2(1 + x)−5/2dx

It is easier to bring the total mass to the other side, as an expression for the
fractional cumulative mass. I don’t like the high power $5/2$ in the integrand.
I’ll use integration by parts to lower the power:

32 CHAPTER 3. SPRINKLING PARTICLES IN SPACE

m(r)
M

= −
∫ r2/a2

0

x1/2 d

dx

{
(1 + x)−3/2

}
dx

= −
∫ r2/a2

0

d
{

x1/2(1 + x)−3/2
}

+ 1
2

∫ r2/a2

0

(1 + x)−3/2 d

dx

{
x1/2

}
dx

= − x1/2(1 + x)−3/2
∣∣∣
r2/a2

0
+ 1

2

∫ r2/a2

0

x−1/2(1 + x)−3/2dx

That looks a bit better already. How about another change of variables:

y =
1
x

⇒ x =
1
y

⇒ dx = − 1
y2

dy ⇒

This gives us:

m(r)
M

= − r

a

(
1 +

r2

a2

)−3/2

+ 1
2

∫ a2/r2

∞
y1/2

(
1 +

1
y

)−3/2 {
− 1

y2
dy

}

= − r

a

(
1 +

r2

a2

)−3/2

− 1
2

∫ a2/r2

∞
y−3/2

(
1 +

1
y

)−3/2

dy

= − r

a

(
r2

a2

(
a2

r2
+ 1

))−3/2

− 1
2

∫ a2/r2

∞
(y + 1)−3/2dy

= − r

a

(r

a

)−3
(

a2

r2
+ 1

)−3/2

+ (y + 1)−1/2
∣∣∣
a2/r2

∞

= −a2

r2

(
1 +

a2

r2

)−3/2

+
(

1 +
a2

r2

)−1/2

=
(

1 +
a2

r2

)−3/2 {
−a2

r2
+

(
1 +

a2

r2

)}

=
(

1 +
a2

r2

)−3/2

(3.6)

So here is what we were looking for:

m(r) = M

(
1 +

a2

r2

)−3/2

(3.7)

Indeed eq. (3.2), with their choice of units.

3.4. PHYSICAL INTUITION 33

3.4 Physical Intuition

Bob: Well, if you are rusty in your integrations, then I don’t know what to call
myself. Nice job! It is always surprising to me how the result of that type of
calculation can come out in such a simple form.

Alice: There probably is a good physical reason for it to be this simple. Let’s
think. I started with density, something that you had found by differentiation,
and then I integrated the product of the density and the geometric opening
angle factor of 4πr2. Apart from that factor, integration and differentiation
would have canceled. Pity.

Bob: Hey, wait a minute. I found the density by integrating alright, but in the
following way, using Poisson’s equation:

1
r2

d

dr

(
r2 d

dr
Φ(r)

)
= 4πGρ(r) (3.8)

Doesn’t that have exactly the factor r2 you were looking for?

Alice: It does . . . Hey, I could have started there! I could have written:

m(r) =
∫ r

0

4πr2ρ(r)dr

=
1
G

∫ r

0

d

dr

(
r2 d

dr
Φ(r)

)

=
1
G

d

dr

(
r2 d

dr
Φ(r)

)∣∣∣∣
r

0

=
1
G

r2 dΦ
dr

Bob: Ah, I remember telling you that it might come in handy to have the
derivatives of the potential at hand.

Alice: Not only that, here is the physical meaning we were looking for! You
also mentioned that the gradient of the potential is the gravitational force,
apart from a minus sign. So what this equation is telling us, is simply that
the physical force is proportional to mass and inverse proportional to the radius
squared: Newton’s gravity! We could have started that way. The magnitude of
the force on a particle with mass mp at distance r from the center is of course:

F = G
mpm(r)

r2

and also equal to:

34 CHAPTER 3. SPRINKLING PARTICLES IN SPACE

F =
∣∣∣∣−mp

dΦ
dr

∣∣∣∣ = mp
dΦ
dr

since dΦ/dr ≥ 0 everywhere.

Bob: You’re right. If we would have started with those two lines, we could have
written

m(r) =
1
G

r2 dΦ
dr

right away. And with the expression I wrote down yesterday,

d

dr
Φ(r) = GM

r

(r2 + a2)3/2

this would have given us:

m(r) =
1
G

r2 dΦ
dr

= M
r3

(r2 + a2)3/2
= M

(
1 +

a2

r2

)−3/2

Alice: Quite a bit faster than my juggling of integrals! We could have used a
healthy dose of physical intuition, before embarking on that lengthy computa-
tion.

3.5 An Intuitive Derivation

Bob: Now that we have found the radius dependence of the cumulative mass, we
only have to invert that relationship, to get the dependence of cumulative mass
on radius. That shouldn’t be too hard. However, I’m getting tired of carrying
along the factors M and a which we may as well consider to be the physical
units used for measuring m and r, so that the latter are used as dimensionless
parameters. Setting M = a = 1, we can write:

m(r) = r3
(
r2 + 1

)−3/2 ⇒

m−2/3 = r−2
(
r2 + 1

)
⇒

r2m−2/3 =
(
r2 + 1

)
⇒

r2
(
m−2/3 − 1

)
= 1 ⇒

3.6. A FORMAL DERIVATION 35

r(m) =
(
m−2/3 − 1

)−1/2

(3.9)

which is indeed eq. (3.3) that you asked me to derive. No need to trust anybody
anymore! We have derived it from first principles.

Alice: But you’d better explain your students how you can restore the correct
factors of M and a, otherwise they will think that you were cutting corners.

Bob: Good point. It takes a while to learn to think in terms of dimension-
less quantities, and to transform easily and confidently between those and the
corresponding physical quantities. In this case, I can just point out that the di-
mensionless quantity r has to be replaced by r/a, and the dimensionless quantity
m has to be replaced by m/M . We then get:

r(m) =
a√(

M
m

)2/3 − 1
(3.10)

Alice: That is correct, but if I were your student, I would be rather surprised.
I would argue that a piece of wood with a length of 1 foot has also a length of
12 inches. So you have to multiply the unit of length with the dimensionless
number 1 or 12, as the case may be, to get the physical length. So I would ask:
why are you dividing r by the length scale a ?

Bob: Yes, students do indeed ask such questions! It just means that they have
to practice more with simple examples, until it comes to them naturally.

Alice: Well, that is not really answering the question. My answer would be
to introduce two different sets of symbols, to remove the confusion between the
physical quantities and the dimensionless quantities.

Bob: I won’t stop you!

3.6 A Formal Derivation

Alice: If you define





r = ξa

m = µM
(3.11)

you can point out that r and a are physical quantities, while ξ is the dimen-
sionless quantity connecting them. Similarly, m and M are physical quantities,
while µ is the dimensionless quantity giving the variable quantity m in terms of
the mass unit m. We can then write:

36 CHAPTER 3. SPRINKLING PARTICLES IN SPACE





ξ =
r

a

µ =
m

M

(3.12)

This makes is possible to write your derivation without any shortcuts, in a
mathematical precise way.

m = Mr3
(
r2 + a2

)−3/2 ⇒

µM = M(ξa)3
(
(ξa)2 + a2

)−3/2 ⇒

µ = ξ3
(
ξ2 + 1

)−3/2 ⇒

µ−2/3 = ξ−2
(
ξ2 + 1

)
⇒

ξ2µ−2/3 =
(
ξ2 + 1

)
⇒

ξ2
(
µ−2/3 − 1

)
= 1 ⇒

ξ(µ) =
(
µ−2/3 − 1

)−1/2

⇒

r(m)
a

=

((
M

m

)2/3

− 1

)−1/2

⇒

r(m) =
a√(

M
m

)2/3 − 1

Bob: Yes, that is full mathematical rigor. But of course, in practice, you
wouldn’t go to such extravagance. This is like what you were pushing for earlier,
with your request of putting hats on all kind of variables, just because their
mathematical functional form changed. Since I’m a physicist, I prefer to change
notation only if the physical meaning of the variables change.

Alice: I must admit, I often do use this type of switching of variables, along the
lines of what I just illustrated. I can see that you’re comfortable with omitting
that step, and that is mostly a matter of taste, I guess. Still, you can’t insist or

3.6. A FORMAL DERIVATION 37

wish that your students have the same quirks or abilities as you. So I suggest
we at least add my derivation as well.

Bob: In that case I insist that we leave my derivation in too, for those younger
versions of me who already got the physics, and don’t want to accrete unneces-
sary mathematical niceties.

Alice: So be it.

38 CHAPTER 3. SPRINKLING PARTICLES IN SPACE

Chapter 4

Populating Velocity Space

4.1 Choosing a Velocity

Alice: Now that we completely understand how you choose the radial distance
for a particle, there is only one thing left to do: to choose the magnitude of
its velocity. In your code you had a more complicated construction than the
one-liner you used for the position. For the velocity you wrote:

x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)

You are throwing dice a number of times, until some criterion is satisfied, and
then you move on to a new one-liner that gives you the value for the variable
velocity, which is the magnitude of the velocity.

Bob: Here is the recipe for that part. Aarseth et al. start with the observation
that the maximum velocity allowed at a radius r is the escape velocity ve(r),
itself a function that depends on the radius. The escape velocity can be deter-
mined by requiring that a particle at radius r has exactly zero total energy, i.e.
its kinetic energy is just enough for a parabolic escape to infinity. Since the
potential energy for a test particle moving in Plummer’s model is given as

Φ(r) = − 1

(r2 + 1)1/2
(4.1)

39

40 CHAPTER 4. POPULATING VELOCITY SPACE

per unit mass of the test particle, we can equate that to the kinetic energy, also
per unit mass, of a particle moving at the escape velocity:

1
2 {ve(r)}2 + Φ(r) = 0 ⇒ (4.2)

{ve(r)}2 = 2
(
r2 + 1

)−1/2 ⇒ (4.3)

ve(r) =
√

2
(
r2 + 1

)−1/4
(4.4)

This is the maximum velocity allowed at radius r, and we also know that the
minimum velocity at radius r is zero. The question is: what is the probability
distribution for 0 ≤ v ≤ ve.

Alice: I see that you are using again the choice of units given by Aarseth et al.,
where G = M = a = 1.

Bob: Yes, they are by far the most convenient, they save time when writing
down and manipulating the equations, and they make it also less likely to make
mistakes.

Alice: I’m not sure about the last part of what you said. The advantage of
keeping the full physical quantities is that you always have a few extra checks
you can make, at the end: if the physical dimensions of length, mass and time
are not exactly the same, at the left and right hand side of an equation, the
equation must be wrong. If you work only with dimensionless quantities, you
loose that advantage.

Bob: I don’t consider it an advantage to have to do so much more work that you
are likely to make more mistakes, so that you can then happily catch them. But
clearly we are talking about matters of taste, and we have already decided we
will present our results either way, now that we know exactly how to transform
in both directions, between physical and dimensionless variables.

4.2 A Meta-Recipe

Alice: Yes, that is what we decided. How did you find the probability distri-
bution for the velocities?

Bob: I started with the distribution function for the energy of the particles:

f(r,v)drdv = f(E(r, v) 4πr2dr 4πv2dv =
384

√
(2)

7πm
(−E)7/2r2v2dr dv (4.5)

Alice: Where did you get this expression from?

4.2. A META-RECIPE 41

Bob: It’s just what it is, for Plummer’s model. I found it in a useful table
in The Gravitational Million-Body Problem, by Douglas Heggie and Piet Hut
[Cambridge University Press, 2003]. It is table 8.1 on p. 73, a whole page full
of useful properties of Plummer’s model. By the way, m here is the mass of a
single star, assuming that all stars have equal mass. If you multiply both sides
of the equation with m, you get fm, the mass density of stars in phase space.

Alice: It is a power law in energy, and it looks like a polytrope. Ah, yes, now
I remember: Plummer’s model is nothing else but a polytrope of index five.
Polytropes are defined in general for index n through a distribution function:

f(E) ∝ (|E|)n−3/2 (4.6)

for negative energy, in other words for bound particles, while f(E) = 0 for
E ≥ 0, otherwise you would get the whole universe filled with escapers.

But it is not fair to use such remembered knowledge, or equations that you
pluck from a book. Our whole approach is aimed at spelling out everything,
both to help us in our research, to see new aspects we might otherwise have
overlooked, and to help us in our teaching, to make things crystal clear to the
students.

Bob: How do you expect to get new insight into the fact that the distribution
function of Plummer’s model is a seven-halves power of the energy? That fact
will not change, no matter how long you stare at it.

Alice: That’s not the point. Once we spell out in complete detail how you
derive and verify all aspects of one recipe for one star cluster model, you can
then follow that example approach to construct any other recipe for any other
cluster model. In other words, we are using Plummer’s model as a case study in
order to present a meta-recipe for constructing recipes for constructing models
for star clusters.

Bob: I had no idea we were doing something that fancy. But whatever words
you want to hang on it, I cannot deny that it is a good thing to check things
for yourself, and most importantly, I’ll have to explain at least some of these
things in class pretty soon, so okay, let’s go through the derivation.

However, we would probably lose the thread of our argument if we would go into
deriving eq. (4.5) right now. Let’s postpone that a bit, and first see whether we
can reconstruct what I have written in my program. As you can expect, here
too I just followed the recipe from Aarseth et al.. Let us first see whether we
can at least derive that recipe, assuming the validity of eq. (4.5).

Alice: Sounds like a good plan.

42 CHAPTER 4. POPULATING VELOCITY SPACE

4.3 Following the Recipe

Bob: Here is what I have understood, so far, of the recipe. Given the distri-
bution function for the energy, you have to transform that into an equation for
the magnitude for the velocity. What makes life simpler, is the fact that we are
comparing particles with different velocity choices at a given point, so we know
that their potential energies are all the same.

This means that the probability g(v) to have an absolute value for the velocity
v = |v| at radial position r = |r| is given by

g(v)dv ∝ (−E(r, v))7/2
v2dv (4.7)

where the energy per unit mass E(r, v) = Φ(r) + 1
2v2 can be written in terms

of the escape velocity ve as E(r, v) = −v2
e + 1

2v2. If we introduce the variable

q =
v

ve
(4.8)

we can write E(q) ∝ q2 − 1, for a given fixed r. The distribution function for v
then becomes, in terms of q, proportional to the following function:

g(q) =
(
1 − q2

)7/2
q2 (4.9)

Alice: And the range of admissible q values is 0 ≤ q ≤ 1. This looks exactly
like the problem we had for determining the radial positions. There we knew
the density, i.e. the probability function to find a particle at a given position.
By integrating the density we obtained the cumulative mass function m(r), and
then we inverted that to obtain r(m).

So I guess the next step is to invert g(q). However, that doesn’t look so easy.

Bob: To say the least. Therefore, for the velocities, they choose a different
approach. If you plot the function g(q), then the height of that curve, for each
q value, gives you the relative probability that q would lie in a region of small
fixed width around that value.

You can imagine that you can obtain a distribution of the required weighting by
throwing darts at that graph. If you hit a point somewhere above the graph, you
throw a new dart, and you keep throwing new darts until you hit a point below
the graph, anywhere between q = 0 and q = 1. If you follow that procedure,
you are automatically guaranteed that you score more hits at places where the
graph is higher, and exactly so in proportion to the height of a graph.

4.4 A Rejection Technique

Alice: That is a clever solution. It is called a rejection technique. Didn’t

4.4. A REJECTION TECHNIQUE 43

John von Neumann first apply that? You start by allowing more solutions than
the minimal set of correct ones, and then you weed out the incorrect ones, by
rejecting them.

Bob: Indeed. And to make the procedure efficient, you don’t want to throw
darts way above the graph, so you limit yourself to the maximum value that
the graph attains in the interval of interest, or perhaps a slightly higher value.
The authors of the paper choose a value of 0.1.

Alice: Is that a safe value? Let’s check for ourselves. The derivative of g(q) is

dg(q)
dq

= 2q
(
1 − q2

)7/2 − 7q3
(
1 − q2

)5/2

= q
(
2 − 9q2

) (
1 − q2

)5/2
(4.10)

To find the extrema for g(q), we set the derivative to zero, and solve for 0 <
qx < 1:

q2
x = 2/9 ⇒ g(qx) = (2/9)(7/9)7/2 ≈ 0.092 (4.11)

Indeed: 0.1 is a rather tight upper limit.

Bob: You can now see what I did when I wrote:

x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)

Alice: Ah, yes. So x stands for q and y stands for g(q). You keep throwing
darts until you find a y value under the graph. That gives you the corresponding
x value. Since this value is equal to q = v/ve, you have to multiply x with the
escape velocity ve, which we found in eq. (4.4) to be:

ve(r) =
√

2
(
r2 + 1

)−1/4
(4.12)

Okay, I understand the procedure now, and it looks correct.

44 CHAPTER 4. POPULATING VELOCITY SPACE

4.5 Distribution Function

Bob: The only thing left to do now is to derive the form of the distribution
function.

Alice: Yes. Let us see how far we can get. Clearly we need a little help from
our friends: here is the classic reference Galactic Dynamics, by James Binney
and Scott Tremaine [Princeton University Press, 1987]. I have found it to be
a very useful book, whenever I had to look up some properties of particular
models in stellar dynamics. It also has helped me a number of times to refresh
my memory about Jeans equations, the tensor virial theorem and those sort of
things.

Bob: I see that your browsing was rather uneven: there is a piece, about one
third along the way, which has a gray strip. Let me open it up there. Aha,
chapter 4: Equilibria of Collisionless Systems. How come those pages are so
well-used? I thought you were mainly interested in collisional systems?

Alice: I didn’t realize my copy of Binney and Tremaine betrayed my past
browsing so well. You’re right, that’s the chapter I tend to consult most. And
precisely because we are interested in collisional systems, we have to find a way
to start our simulations with a collisionless system.

In other words, we run a numerical simulation of a collisional N-body system
in order to see the effects of two-body relaxation and all that. But we need to
have a well-defined starting point. A formal way to define this is to say that
we ignore collisions from time t = −∞ all the way to t = 0. Then, at t = 0,
we switch on the effects of close encounters, and through our simulations we
can see in what way our star clusters then begin to deviate from the dynamical
equilibrium we started with.

I’m sure you don’t like such a formal way of speaking about it. But you can’t
complain: you started asking philosophical questions about well-read chapters
in someone else’s book! So there.

Bob: Okay, let’s go get our distribution function. Does this book tell us how
to do that?

Alice: Yes, but let us first see how far we can get under our own steam. Let us
go back all the way to how we got started, namely with the Plummer potential:

Φ(r) = −GM
1

(r2 + a2)1/2

Let us define f̃(r,v) as the density of stars in phase space. This means that
in a six-dimensional volume element drdv, you will find a number of particles
equal to f̃(r,v)drdv. We will restrict ourselves to equal-mass systems, where
each star has a mass m. This means that the volume element drdv contains on
average an amount of mass equal to mf̃(r,v)drdv.

4.6. THE DENSITY AS A PROJECTION 45

In general, f̃ will be time dependent, i.e. of the form f̃(r,v), but here we will
restrict ourselves to dynamical equilibrium situations, where f̃ is constant, at
least on a dynamical time scale, of order the crossing time, the time it will take
for a typical particle to cross the system.

Each star moving with velocity v at radial position r has a kinetic energy 1
2mv2

and a potential energy mΦ(r). It is most convenient to talk about specific
energies, namely the energy per unit mass, E, which is given as:

E = Φ(r) + 1
2v2 (4.13)

In the case of spherical symmetry and isotropy, we have f̃(r,v) = f(E) where
the energy E(r,v) is the sum of the kinetic and potential energy per unit mass
of the particles that reside in the volume element drdv.

Now you see why I started with that funny tilde over the distribution function:
since we will be dealing primarily with f(E), I preferred to use the f notation
for a distribution function with an E dependence, leaving the f̃ notation for the
dependence of Cartesian phase space coordinates.

Bob: I still would be happy to not use tildes at all, but we’ll each follow our
own way.

Alice: There is one more thing we definitely have to stress here. Even though
we have switched to E dependence, we still have to write f(E)drdv, in order to
find the number of stars in the volume element drdv.

This is something students always get confused about. It is tempting to write
f(E)dE instead, but that would be wrong: the element dE would include all
particles with specific energy between E and E + dE, globally in the system,
which will amount to far more mass than is present in the local volume element
r,v.

Bob: Noted!

4.6 The Density as a Projection

Alice: The most fundamental stage for a star system in stellar dynamics is phase
space. Because our physical eyes see what happens in configuration space, we
think about the density as a rather basic function. But really, what we call
density is already a type of shadow: it is a projection down to 3D from the
distribution function in 6D.

In a star cluster with spherical symmetry in configuration space, we can show
this projection effect as follows. The mass density in stars at a distance r from
the center is

46 CHAPTER 4. POPULATING VELOCITY SPACE

ρ(r) =
∫ ∞

0

f(E) dv (4.14)

where the integral is over all of velocity space. If in addition to spherical sym-
metry, the distribution function is isotropic, we know that there is no direction
dependence in v. In that case only the magnitude v = |v| can come into play.
We can thus substitute:

dv = 4π v2dv

Also, we know that the distribution function has to be zero for positive energies,
since unbound particles will escape, and their density in an (almost) infinite
universe will become (almost) zero:

f(E) = 0 (E ≥ 0)

For a given radial distance r, the escape velocity is given by definition as the
velocity for which a particle can just reach infinity, which means that the total
energy is zero for that particle, and therefore also the energy per unit mass. As
you already showed right at the beginning of our discussion, this implies:

E = Φ(r) + 1
2v2

esc = 0 ⇒ vesc(r) = (−2Φ(r))1/2

This means that we can rewrite eq. (4.14) as:

ρ(r) = 4π

∫ vesc

0

f(E) v2dv

Now

E = Φ + 1
2v2 ⇒ v2 = 2(E − Φ) ⇒

v = 21/2(E − Φ)1/2 ⇒

dv = 2−1/2(E − Φ)−1/2 dE

So we get for the density:

ρ(r) = 4π

∫ vesc

0

f(E) v2dv

4.7. A CHANGE OF VARIABLES 47

= 4π
∫ vesc

0

f(E) 2(E − Φ) 2−1/2(E − Φ)−1/2 dE

= 25/2π

∫ 0

Φ

f(E)(E − Φ)1/2dE (4.15)

Here both Φ and E are negative. It is easier to introduce quantities that are
positive. Following the notation used by Binney and Tremaine, we can define:





Ψ = −Φ

E = −E
(4.16)

We can write again explicitly how the density in configuration space is a pro-
jection down from phase space, through an integration over E :

ρ(r) = 25/2π

∫ Ψ

0

f(E)(Ψ − E)1/2dE (4.17)

Strictly speaking I should have changed the symbol for f again since the func-
tional form is different: f̂(E) = f(E).

Bob: I’m glad you didn’t!

Alice: I decided to take my hat off for you, or at least f’s hat. Even for me,
too much formality gets bothersome.

4.7 A Change of Variables

Bob: Looking over your shoulder, I see that your eq. (4.17) is exactly eq. (4-
137) in Binney and Tremaine, if you pull out their

√
2 in front of the integral.

Alice: Yes. Let us follow their next few steps, for our particular Plummer case.
They remark that Ψ is a monotonic function of r, and therefore it is possible to
use Ψ as the independent variable in the expression for ρ.

Bob: That makes sense. If Ψ(r) would not be monotonic, there would be some
values r1 and r2 with r1 6= r2 for which Ψ(r1) = Ψ(r2). In that case, if you
would write ρ(Ψ), you would not know whether you would be referring to ρ(r1)
or ρ(r2).

Alice: Right. But here everything is monotonic: the density keeps dropping
off when you move away from the center, the radius keeps increasing, and the
potential keeps increasing as well, or equivalently, Ψ = −Φ keeps decreasing.

Bob: So how do we get from ρ(r) to ρ(Ψ) ? That can’t be difficult. We have

ρ(r)dr = ρ(Ψ)dΨ ⇒ ρ(Ψ) =
dr

dΨ
ρ(r)

48 CHAPTER 4. POPULATING VELOCITY SPACE

And the conversion factor is nothing less than the inverse of the gravitational
acceleration, which I derived early on, with the prophetic remark that it would
come in handy later on.

Alice: No.

Bob: No?

Alice: No, there is no conversion factor. Think about what density means, in
this context. The mass density ρ(r)dr is the amount of mass in stars within the
volume dr, and not within the whole shell of the cluster between r and r + dr.
The latter amount of mass would be 4πr2ρdr.

This is the same thing as what we had seen with the phase space distribution
function f : the physical meaning does not change, where we write it as f(r,v)
or as f(E). In both cases we multiply f with the volume element drdv.

Bob: You’re right! How tricky. Or how stupid of me.

Alice: Let’s call it tricky. Believe me, I’ve made these mistakes often enough
myself.

4.8 Deprojecting the Density

Bob: So eq. (4.17) becomes simply:

ρ(Ψ) = 25/2π

∫ Ψ

0

f(E)(Ψ − E)1/2dE

Alice: Indeed. If we divide both sides of the equation by
√

8π, we get Binney
and Tremaine’s eq. (4-138):

1√
8π

ρ(Ψ) = 2
∫ Ψ

0

f(E)(Ψ − E)1/2dE (4.18)

Bob: Why would they divide by that funny factor?

Alice: In order to get a simple looking right-hand side in their next equation
(4-139), which they obtain by differentiating eq. (4.18) with respect to Ψ:

1√
8π

dρ

dΨ
=

∫ Ψ

0

f(E)
dE√
Ψ − E

(4.19)

Bob: Ah, and here they do their deprojecting: they claim that this equation
can be inverted. Eq. (4.19) gives you dρ/dΨ, when you give it f(E). What we
want is to obtain f(E), and we can certainly figure out how to compute dρ/dΨ.
I see the logic now.

4.8. DEPROJECTING THE DENSITY 49

Alice: Yes, and they give the solution of inverting Eq. (4.19), as their eq.
(4-140a):

f(E) =
1√
8π2

d

dE

∫ E

0

dρ

dΨ
dΨ√
E − Ψ

(4.20)

and in alternative form as their (4-140b):

f(E) =
1√
8π2

[∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

+
1√
E

(
dρ

dΨ

)

Ψ=0

]
(4.21)

Bob: Great! That will make it finally possible for us to determine the distri-
bution function: with a little luck we can solve that integral.

Alice: Not so quick: how do we know that they inverted eq. (4.19) correctly?

Bob: There you go again! You don’t take anything on authority, won’t you?

Alice: Well, no, preferably not. The whole reason to get embarked on this
exercise is to proof things for ourselves, from scratch. I won’t call it starting
from scratch if we simply accept their inversion. We might as well have accepted
their expression for the distribution function in the first place.

Bob: Which would have been fine with me, to be honest. But okay, we got
started, we may as well finish. Though I really begin to doubt that our students
will have the stomach to go through al this.

Alice: The best ones will. And those are the ones we’d like to stay in touch
with. So this may a good way to find good students, to see who are interesting
in figuring all this out to the bottom.

Bob: I’m not so sure. You might just get formalistic and pedantic students.
I prefer to work with students who get codes to run and who get results with
codes, rather than students who can solve this inversion equation

Alice: The very best students will be able to do both.

Bob: As able as Abel.

Alice: Such a silly pun would work better if you had an accent. Come, let’s
take our usual approach: first let’s assume that eqs. (4.20) and (4.21) are indeed
correct, and let us check whether we can then derive the correct distribution
function for Plummer’s model. Having done that, we will come back, and check
for ourselves whether we can prove this Abel integral equation inversion.

Bob: Something tells me it will be a long day.

Alice: Perhaps. Whatever it takes! But I agree with you, this may well take
longer than we thought. Let’s continue tomorrow.

Bob: That sounds better already. See you then!

50 CHAPTER 4. POPULATING VELOCITY SPACE

Chapter 5

Getting the Physics Right

5.1 An Analytic Recipe

Alice: Hi Bob! Well, are you ready to derive the distribution function of
Plummer’s model from first principles?

Bob: If we’re really going to the bottom of this, I insist on using G = M = a =
1. Let’s roll up our sleeves then. Here is the, by now very familiar, potential-
density pair for our Plummer’s model:





Ψ(r) = −Φ(r) =
(
1 + r2

)−1/2

ρ(r) =
3
4π

(
1 + r2

)−5/2
(5.1)

Substituting the right-hand side of the first equation in the second equation, we
find:

ρ(Ψ) =
3
4π

Ψ5 (5.2)

Now we have a choice: we can use this expression either in eq. (4.20) or in eq.
(4.21). If I were to guess, the sheer fact that Binney and Tremaine have added
the second equation would suggest that that one is the easiest to work with;
otherwise they would have limited themselves to the first one. They don’t seem
to add anything more than necessary.

Alice: Unlike our style of writing.

Bob: I’d say! It’s a good thing that we are writing this for our students . . .

Alice: . . . and for ourselves . . .

51

52 CHAPTER 5. GETTING THE PHYSICS RIGHT

Bob: . . . and for ourselves, yes, but not for our colleagues. I certainly wouldn’t
want to show to them how many small steps it takes me to derive these types
of equations.

Alice: But don’t forget, we are planning to put this up on the web.

Bob: Ah, yes, I’d forgotten about that already. Oh, well, we can just call each
page ‘class notes’, and that will chase our colleagues away.

Alice: I’m not so sure, but I don’t want to discourage you. Let’s move on!

Bob: Yes, let’s. As I was saying, my bet is on eq. (4.21). Let’s write it down
again here, and then substitute ρ(Ψ) with eq. (5.2):

f(E) =
1√
8π2

[∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

+
1√
E

(
dρ

dΨ

)

Ψ=0

]

=
1√
8π2

3
4π

[∫ E

0

(
d2

dΨ2

(
Ψ5

)) dΨ√
E − Ψ

+
1√
E

(
d

dΨ
(
Ψ5

))

Ψ=0

]

=
3

8
√

2π3

[∫ E

0

20
Ψ3dΨ√
E − Ψ

+
5√
E

(
Ψ4

)
Ψ=0

]

The second term is zero, and the expression in the denominator invites us to
introduce the following change of variables:

x = E − Ψ ⇒ Ψ = E − x ⇒ dΨ = −dx ⇒

f(E) =
3 × 20
8
√

2π3

∫ 0

E
(E − x)3

(−dx)√
x

=
15
√

2
4π3

∫ E

0

{
−x5/2 + 3Ex3/2 − 3E2x1/2 + E3x−1/2

}
dx

=
15
√

2
4π3

{
−2

7
x7/2 +

6
5
Ex5/2 − 2E2x3/2 + 2E3x1/2

}∣∣∣∣
E

0

=
15
√

2
4π3

{
−2

7
+

6
5
− 2 + 2

}
E7/2

=
15
√

2
4π3

32
35

E7/2

=
24
√

2
7π3

E7/2 (5.3)

5.2. THE FULL FORM 53

5.2 The Full Form

Well, I guess I was not as rusty in these kind of manipulations as I had thought
I was.

Alice: You shouldn’t, since you did your undergraduate studies a lot more
recently than I did!

Bob: Yet it seems so long ago! I guess everything is relative.

Alice: At least the power 7/2 came out correctly, as expected for a polytrope
of index 5. A while ago you wrote down an expression you got from some book,
where was that, ah, eq. (4.5). Let’s write it here again:

f(E(r, v) 4πr2dr 4πv2dv =
384

√
(2)

7πm
(−E)7/2r2v2dr dv (5.4)

Bob: Since 384/16 = 24, we got exactly what was ordered. It was a bit of work,
but I must admit, it is fun to derive things from scratch. But wait, what is that
factor m doing there? That one is missing from what I just derived.

Alice: It was the mass of a single star, in our star cluster in which all masses
are the same. The book you picked your expression for the distribution function
from, must have defined f(E) as the number density of the stars. If you multiply
both sides with m, you get on the right-hand side what you found. This then
must be the mass density of the stars in phase space, namely the number density
multiplied by the mass of a single star.

Bob: That must be the answer.

Alice: You may remember that I did not protest when you decided to do your
derivation purely in dimensionless units. As a reward, I insist on you writing
the final answer with all the G ’s, M ’s, and a ’s put back in.

Bob: That’s easy. Here it is:

f(E) =
24

√
2

7π3

a2

G5M4
E7/2 (5.5)

But don’t ask me to prove it to you with hats or tildes or a substantial part of
the Greek alphabet!

Alice: I won’t. But since that is how I would do it, I’m curious to know what
you just did. How did you figure this out?

5.3 Dimensional Analysis

Bob: Well, I used dimensional analysis, but not in a very systematic way, just
substituting what seems to work in the quickest way. If we denote the unknown

54 CHAPTER 5. GETTING THE PHYSICS RIGHT

combination of G,M, a factors by A, we can start by writing

f(E) = A E7/2

where I have dropped all numerical factors, since they won’t make any difference
as far as dimensional analysis is concerned. Since you just pointed out that we
have computed the mass density in phase space, we know that the expression

f(E)drdv

has the dimension of mass, something we can write as

[f(E)drdv] = [mass]

Therefore

[f] = [mass] [length]−3 [velocity]−3

Since energy is proportional to mass times velocity squared, think mc2, our E ,
the energy per unit mass, has a dimension of velocity squared, so

[
E7/2

]
= [velocity]7

Before you protest that I should use only physical dimensions of [mass], [length]
and [time] . . .

Alice: . . . which is what I would have done . . .

Bob: . . . I want to point out that I have a freedom of choice, as long as my
three units are not degenerate. I find it more convenient to work with [mass],
[length] and [velocity].

Alice: Come to think of it, that makes sense, since the last two reflect the two
different spaces of which phase space is the product, and mass is what we have
been sprinkling into phase space.

Bob: I guess. You always find a way to suggest more abstract reasons for what
I am doing intuitively. It just has been my experience that velocity is a more
useful quantity than time in this kind of dimensional analysis.

Alice: I think I’ll follow your suggestion, from now on. Learn something new
every day!

5.4 Getting The Details Right

Bob: Where was I? Ah, yes, I started with

5.4. GETTING THE DETAILS RIGHT 55

f(E) = A E7/2

and using the last two expression above, I can find that A has the following
dimension:

[A] = [f]
[
E−7/2

]

= [mass] [length]−3 [velocity]−3 [velocity]−7

= [mass] [length]−3 [velocity]−10

Now the crucial point is that only G can help us in giving us a velocity dimension.
Velocity involves time, since its dimension is length over time, and neither M
nor a have a time component.

The dimension of G follows from the fact that potential energy must have the
same dimension as kinetic energy:

[
GMm

r

]
=

[
1
2mv2

]

for whatever M ’s, m’s, r’s, etc. you care to use. This implies:

[
v2

]
=

[
GM

r

]
= [G] [mass] [length]−1

So this tells us that we can factor out G as follows:

[A] = [mass] [length]−3 [
G−5

]
[mass]−5 [length]5

=
[
G−5

]
[mass]−4 [length]2

Since the only mass we have is M , and the only length we have is a, we have to
conclude that

A ∝ G−5M−4a2

This then means that our dimensionless expression, that we derived with the
help of Binney and Tremaine:

f(E) =
24
√

2
7π3

E7/2

has to be expanded in the following way, to make it again dimensionally correct:

56 CHAPTER 5. GETTING THE PHYSICS RIGHT

f(E) =
24

√
2

7π3

a2

G5M4
E7/2

5.5 From Implicit to Explicit

Alice: This is indeed what you wrote down before, eq. (5.5).

Bob: I must say, I’m surprised at how many words and lines of equations I have
to write down to make it all explicit. I did it mostly in my head, with a few
scribbles here and there to provide some help.

Alice: That’s because you’ve grown so familiar by now with these kinds of
manipulations. But I definitely think it is a good idea to show your students
how you do this, if only once.

Bob: Don’t you think they will figure it out for themselves, sooner or later.

Alice: Probably later. I like the idea of being a catalyst, speeding up the
process of letting them discover things. And by making your implicit stream of
thoughts explicit, tedious as it may seem, we may be doing them a real favor.

Besides, to be really honest, I think we can still learn a lot as well. I had no idea
that your approach would be so different from mine, and I can see the advantage
of your way of thinking, at least in some cases such as these. It would definitely
have taken me longer to derive your result in my way.

Bob: It is interesting, isn’t it, that normally we don’t talk very much about how
we do these kind of little, or not so little, derivations. And I must admit, I too
have learned quite a bit from the way you approach these problems. Besides, it
is more fun to struggle with all this together.

Well, I think we’ve struggled enough now. Let’s call it a day.

Alice: call it a day? But we haven’t yet checked the truth behind the Abel
integral transform, whether that way of inverting the equation was correct. We
have just taken Binney and Tremaine’s word for it!

Bob: I’d forgotten all about that. Well, hmm. Do you really insist on checking
it all the way?

Alice: I do.

Bob: Okay, okay. Let’s get it over with. Can I look at that page, where they
talk about Mr. Abel and his transforms? You would at least expect them to
give us a hint.

Alice: They do give a hint: go read appendix 1.B.4.

5.6. ABEL INTEGRAL TRANSFORMS 57

5.6 Abel Integral Transforms

Bob: So they do. Here it is. They start with the following two lines.

Let

f(x) =
∫ x

0

g(t)dt

(x − t)α
0 < α < 1 (5.6)

Then

g(t) =
sinπα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α

=
sinπα

π

[∫ t

0

df

dt

dx

(t − x)1−α
+

f(0)
t1−α

]
(5.7)

I like that terse style: only ”Let . . then . .”, what a difference with our
constant chattering!

Alice: It is a good move of them to reduce the more complex equations (4.20)
and (4.21) to these simplified forms. But as always, let us first check whether
the ”Let . . then . .” claim, if true, will solve our problem. Let us start with
eq. (5.6). For this to be equal to our previous equation (4.19):

1√
8π

dρ

dΨ
=

∫ Ψ

0

f(E)
dE√
Ψ − E

We have to use the following dictionary, with their appendix notation on the
left and their main text notation on the right:





f(x) → 1√
8π

dρ

dΨ

x → Ψ

g(t) → f(E)

t → E

α → 1
2

(5.8)

Bob: Now that’s what I call confusing. They use f symbols for two very
different functions, in their two languages. We’ll have to be careful with this
dictionary.

58 CHAPTER 5. GETTING THE PHYSICS RIGHT

Alice: But I thought you didn’t like hats and tildes, and preferred to use the
same symbol for different things?

Bob: Only if they have the same physical meaning. Here we’re talking math-
ematics. I would have prefered that they would have used k(x) instead of f(x)
in the appendix. Oh well, small point, as long as we’re careful.

Alice: Now let us assume that their eq. (5.9) indeed provides the solution for
eq. (5.6). We then have to translate eq. (5.6) back into main text quantities,
using the dictionary in the other direction. Here we go:

g(t) =
sin πα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α

=
sin πα

π

[∫ t

0

df

dt

dx

(t − x)1−α
+

f(0)
t1−α

]
⇒

f(E) =
sin

(
π
2

)

π

d

dE

∫ E

0

1√
8π2

dρ

dΨ
dΨ√
E − Ψ

=
sin

(
π
2

)

π

[∫ E

0

1√
8π2

d2ρ

dΨ2

dΨ√
E − Ψ

+
1√
8π2

1√
E

(
dρ

dΨ

)

Ψ=0

]

Bob: Indeed, these are exactly the eqs. (4.20) and (4.21) that we set out to
prove. Great! Now can we start testing my code?

Alice: Ho! Not so quick. All we have done is verify that Binney and Tremaine’s
claim in the appendix leads to their claim in the main text. Now we have to
prove the claim they make in their appendix.

Chapter 6

Getting the Math Right

6.1 A Mathematical Proof

Bob: I started out with the recipe provided by Aarseth, Henon and Wielen,
and you insisted that we use Binney and Tremaine to check them. We now have
five luminaries in stellar dynamics to vouch for our results to be correct. On
top of that, we got quite a bit of insight in the underlying physics. Isn’t that
enough?

Alice: Not to my taste. We have blindly accepted what Binney and Tremaine
claim in their appendix, without proving it for ourselves.

Bob: But that is mathematics! Look, there is no physics in the relation be-
tween eqs. (5.6) and (5.9). It’s just a matter of some kind of mathematical
transformation, like Fourier transforms or Laplace transforms.

Alice: Even so, we set out to prove things from first principles, and I certainly
would feel more comfortable to do exactly that. And I don’t feel I can call Abel
transforms first principles. Besides, they may well come in handy when we will
start constructing more complicated models, and I wouldn’t mind getting some
more practice in these type of manipulations.

Come on, let’s just do it.

Bob: Okay, but not a bit more than is really necessary. Look, they introduce
α where we only needed the number 1/2.

Alice: I’ll do it for α, why not. You can just watch. So how is the problem
posed exactly? In the ”if . . then . . ” sentence in their appendix . . .

Bob: . . . their ”Let . . then . . ” sentence . . .

Alice: . . . yes, of course, they are mathematical physicists, not computer
scientists. Okay, in the ”Let . . then . . ” sentence in their appendix, Binney

59

60 CHAPTER 6. GETTING THE MATH RIGHT

and Tremaine actually assert two results. Let me start trying to prove the first
one, which is:

Let

f(x) =
∫ x

0

g(t)dt

(x − t)α
0 < α < 1 (6.1)

Then

g(t) =
sinπα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α
(6.2)

Now how shall we prove this?

6.2 The Problem

Bob: They give a terse hint about substituting the first equation in the second
and interchanging the order of the integration. Now why would you want to
substitute the first equation in the second? I like brevity, but this is a bit too
brief for me.

Alice: Well, given that their book as it is runs already well over 700 pages,
they probably thought they couldn’t afford more room for explanations.

Bob: Good thing we don’t suffer from that constraint. The world wide web is
wide enough for our meanderings.

Alice: But let’s not meander too far. I want to crack this nut. Let’s see. Ah,
they must mean that they take the right hand side of eq. (6.2), and work that
out, in order to see whether they really get g(t) back in the end.

Bob: What do you mean? They have already called it g(t).

Alice: Well, they have asserted that the right hand side is the answer to the
question of what g(t) is. We now have to prove it.

Bob: I find that confusing.

Alice: It is a bit confusing. Here, let’s be more precise and explicit, without
confusing name spaces. Forget about eq. (6.2) . . .

Bob: . . . with pleasure and glee. I’d just as soon forget about this whole
derivation . . .

Alice: Patience, please. Forget about eq. (6.2), and write instead

h(t) =
sin πα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α
(6.3)

6.3. THE ANSWER 61

Bob: Exactly the same, but now you’re calling it h(t).

Alice: Exactly. Exactly exactly, I mean. The point is that now we don’t make
any claim about what h(t) is supposed to mean, it is just a function we happen
to define this way, right? Now, this new function h(t) also happens to have
this factor f(x) in the integrand, and nothing stops us from substituting the
expression for f(x), given in eq. (6.1) into eq. (6.3).

Bob: Yes, and yes. I agree. That is much clearer, since there are only one f(x)
and one g(t) and one h(t) in the game, rather than two different g(t)’s with
different status. And ah, now I see why you would want to substitute eq. (6.1)
into eq. (6.3). Is that what they meant?

Alice: I guess it is.

Bob: Okay, now I see why. Boy, they are terse!

Alice: In math, more than half the work is often to find out exactly what to
do. Actually doing it is typically the least of the problem.

Bob: But let’s do it, and get it over with.

6.3 The Answer

Alice: Yes, let’s. Here is the result of substituting eq. (6.1) into eq. (6.3):

h(t) =
sinπα

π

d

dt

∫ t

0

dx

(t − x)1−α

∫ x

0

g(t′)dt′

(x − t′)α

=
sinπα

π

d

dt

∫ t

0

dx

∫ x

0

dt′
g(t′)

(t − x)1−α(x − t′)α

=
sinπα

π

d

dt

∫ t

0

dt′
∫ t

t′
dx

g(t′)
(t − x)1−α(x − t′)α

=
sinπα

π

d

dt

∫ t

0

dt′g(t′)
∫ t

t′

dx

(t − x)1−α(x − t′)α
(6.4)

Bob: What did you do exactly when you went from the second to the third
line?

Alice: I followed Binney and Tremaine’s advice, to interchange the order of
integration.

Bob: But how did you get the new limits for the two integral signs in the third
line so quickly?

Alice: If you draw a picture, you can see what is going on here. Instead of t′

use y instead. We then have a double integral over the {x, y} plane. The area
over which we take the integral is a triangle bounded on top by the diagonal

62 CHAPTER 6. GETTING THE MATH RIGHT

x = y, on the bottom by the positive x axis, and on the right by the line x = t.
Now in the second line the inner integral runs over vertical lines, and in the
third integral, integration runs over horizontal lines.

[We should probably draw a picture here]

— picture —

— picture —

— picture —

— picture —

— picture —

Bob: Ah, yes, I see now. It has been a while since I interchanged the order of
integrations, I must admit. But your picture makes it clear. Onward!

Alice: Let us focus on the inner integral, and let us call it

I(t, t′) =
∫ t

t′

dx

(t − x)1−α(x − t′)α
(6.5)

It is natural to introduce:

y = x − t′ ⇒ x = y + t′ ⇒ (6.6)

I(t, t′) =
∫ t−t′

0

dy

(t − t′ − y)1−αyα
(6.7)

This in turn invites a second change of variables:

z =
y

t − t′
⇒ y = (t − t′)z ⇒ (6.8)

t − t′ − y = (t − t′)(1 − z) ⇒ (6.9)

I(t, t′) =
∫ 1

0

(t − t′)dz

(t − t′)1−α(1 − z)1−α(t − t′)αzα

=
∫ 1

0

dz

(1 − z)1−αzα
(6.10)

6.4. ALL THE WAY 63

That is nice: both the t and the t′ dependences have dropped out, and we are
left with a definite integral that only has one parameter, α.

Bob: And the answer is:

I(t, t′) =
∫ 1

0

dz

(1 − z)1−αzα
=

π

sinπα
(6.11)

6.4 All the Way

Alice: How did you get that so quickly? Did you use a symbolic integrator?
That is cheating?

Bob: No, I used Binney and Tremaine again, their appendix eq. (1B-58). You
see, they give you just the minimal amount of information needed to get this
all worked out.

Alice: But we haven’t worked out the integral yet.

Bob: Are you kidding? Perhaps I should call up a symbolic integrator!

Alice: Look, Bob, we’re nearly there, a few feet from the finish line, and you
want to give up now? Let’s just work it out, and then we can tell all of our friends
and family that we have just derived the distribution function corresponding to
a softened potential, really from first principles.

Bob: My mom will be thrilled to hear that. I can’t get you out of this room
until you’ve proved everything, right? Well, I’ll play along under one condition:
this time we really will use only α = 1

2 . That is all that we needed to prove
Binney and Tremaine’s main text results, eqs. (4.20) and (4.21). Anything more
would be masochism.

Alice: Okay, okay, α = 1
2 it will be. I’ll take a deep breath, and then:

∫ 1

0

dz

(1 − z)1/2z1/2
=

∫ 1

0

dz

(z − z2)1/2
=

∫ 1

0

dz√
1
4 −

(
z − 1

2

)2
=

∫ 1
2

− 1
2

dx√
1
4 − x2

=
∫ 1

−1

1
2dy√

1
4 −

(
y2

4

) =
∫ 1

−1

dy√
1 − y2

Aha! Now we’re getting there. And rather than looking this one up, I do
remember how it went. It is all coming back to me now from my freshman
years. You start with the following tautology, given that the arcsin function is
the inverse of the sin function:

sin(arcsinx) = x

64 CHAPTER 6. GETTING THE MATH RIGHT

When you differentiate this with respect to x, you get

d

dx
sin(arcsinx) = cos(arcsinx)

d

dx
arcsinx = 1

This implies:

d

dx
arcsinx =

1√
1 − [sin(arcsinx)]2

=
1√

1 − x2

This means that the solution of our integral is:

∫ 1

0

dz

(1 − z)1/2z1/2
=

∫ 1

−1

dy√
1 − y2

= {arcsinx}|1−1 =
π

2
+

π

2
= π

Now that makes me feel good! From first principles, all the way.

6.5 Q.E.D.

Bob: Congratulations with going back to your youth!

Alice: Do I detect a slight sense of sarcasm there?

Bob: Only slight. Next thing you’ll do is prove that 1 + 1 = 2. Do you have a
more first principles all-the-way way of proving that too?

Alice: Well, you start with the empty set, and the notion of a successor map-
ping, which can be implemented by constructing a set containing the previous
number, and then . . .

Bob: . . . I shouldn’t have asked!

Alice: Not if you want us to finish today. We’re not quite done yet.

Bob: Anyway, I’m glad to see that you’re getting at least a wee bit more terse in
your derivations, not writing out every change in variables explicitly anymore.

Alice: Yeah, only a wee bit. So. Now we have to substitute our nice result, π,
for the inner integral in eq. (6.4). Remembering the original definition of h(t)
in eq. (6.3), we can use both of these equations to write, for our α = 1

2 :

h(t) =
1
π

d

dt

∫ t

0

f(x)dx

(t − x)1/2

=
1
π

d

dt

∫ t

0

dt′g(t′)
∫ t

t′

dx

(t − x)1/2(x − t′)1/2

=
1
π

d

dt

∫ t

0

dt′g(t′)π

6.6. THE END OF LET-THEN 65

=
d

dt

∫ t

0

dt′g(t′)

= g(t)

Quod erat demonstrandum.

Bob: quad what?

Alice: quod, as in quod licet Jovi. Never mind, that is Latin. It means ‘what
was to be demonstrated.’ Mathematicians used to write q.e.d at the end of a
proof.

Bob: I thought that stood for quantum electrodynamics.

Alice: That too, but we’ll keep quantum field theory for volume 137 in our
series.

Bob: Remind me, I’m losing track. So you have proved that h(t) = g(t). Why
again did we want to know that?

Alice: You’re like my students: lack of motivation leads to loss of memory! We
wrote down a definition for the function h(t) in (6.3), and then we substituted
the f(x) expression within h(t) using eq. (5.6). And then — but I can see your
eyes glazing over. You must be getting tired.

Bob: Too much math, I’m afraid.

Alice: I’ll write it down again. We started with

f(x) =
∫ x

0

g(t)dt

(x − t)α
0 < α < 1 (6.12)

and then we proved that

h(t) =
sinπα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α
= g(t) (6.13)

In words: eq. (6.12) shows you have to compute f(x), if you start with g(t).
Now in order to find the inverse expression, you start instead with f(x), and
then you can compute h(t) given in (6.13), and lo and behold, that actually
gives you g(t). So the expression between the two equal signs in eq. (6.13) is
the inverse of the expression given in eq. (6.12): our friend the Abel transform.
And the good thing is: we have now proved it completely.

Bob: How nice. And yes, I think you are right: I am getting a bit tired. Can
we go home now?

6.6 The End of Let-Then

Alice: Almost. Remember Binney and Tremaine’s appendix? Here it is again,

66 CHAPTER 6. GETTING THE MATH RIGHT

there famous ”Let . . then . .” claim:

Let

f(x) =
∫ x

0

g(t)dt

(x − t)α
0 < α < 1 (6.14)

Then

g(t) =
sinπα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α

=
sinπα

π

[∫ t

0

df

dt

dx

(t − x)1−α
+

f(0)
t1−α

]
(6.15)

See, we have proved the first equality in the last expression, but we haven’t
proved the second equality yet. I promise, this will be the last thing we’ll do
today. I hope it is just a matter of writing things out, since I’m getting a bit
tired to, to tell you the truth. One more deep breath, and here we go.

A natural change of variables to simplify the denominator in the integrand for
g(t) is:

w = t − x ⇒ x = t − w ⇒ dx = −dw

Starting now with the first equality in the last equation above, I’ll just see what
happens when I do the differentiation with respect to t:

g(t) =
sinπα

π

d

dt

∫ t

0

f(x)dx

(t − x)1−α

=
sinπα

π

d

dt

∫ 0

t

f(t − w)(−dw)
w1−α

=
sinπα

π

d

dt

∫ t

0

f(t − w)dw

w1−α

=
sinπα

π

[
f(t − w)

w1−α

∣∣∣∣
w=t

+
∫ t

0

(
d

dt
f(t − w)

)
dw

w1−α

]

=
sinπα

π

[
f(0)
t1−α

+
∫ t

0

(
d

dx
f(x)

)
dx

(t − x)1−α

]

=
sinπα

π

[
f(0)
t1−α

+
∫ t

0

df

dx

dx

(t − x)1−α

]

Bob: And that is exactly what you wanted to prove. Are you happy now?

Alice: I’m very happy.

6.6. THE END OF LET-THEN 67

Bob: And I even forgot to protest against the fact that you smuggled α back
into the game again.

Alice: So, we’ve pulled it off!

Bob: And look how much we have pulled. We have taken a couple sentences
from an appendix from Binney and Tremaine, and we have expanded their
discussion by a factor of, what? More than ten pages I bet – an increase of two
orders of magnitude! Amazing. No wonder I’m tired. Let’s call it a day.

Alice: Fine with me. And tomorrow we’ll see your code in action.

Bob: Looking forward to it!

68 CHAPTER 6. GETTING THE MATH RIGHT

Chapter 7

Energy Checks

7.1 More Modular

Alice: Hi Bob! Did you recover from our mathematical adventures?

Bob: Well, I must say, I’m glad to be back in the normal world. Let me show
you how to deal with a real example of Plummer’s model, rather than with a
mathematical abstraction.

Alice: You mean the code you showed me, which triggered our lengthy discus-
sion?

Bob: Yes, but I made one modification, following your suggestion that I could
factor out the spherical angle treatment, which was so similar for creating the
position and velocity vectors. I’ve named it mkplummer2.rb. There is now one
new method:

def spherical(r)
vector = Vector.new
theta = acos(frand(-1, 1))
phi = frand(0, 2*PI)
vector[0] = r * sin(theta) * cos(phi)
vector[1] = r * sin(theta) * sin(phi)
vector[2] = r * cos(theta)
vector

end

It takes only one argument, the absolute value of the vector that will be returned
by this method with random values for the two spherical angles θ and φ. You
can see how I invoke this method from within the inner loop of the mkplummer
method:

69

70 CHAPTER 7. ENERGY CHECKS

nb.body.each do |b|
b.mass = 1.0/n
radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)
b.pos = spherical(radius)
x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)
b.vel = spherical(velocity)

end

Alice: I like this better, yes, it is more modular.

Bob: And a lot shorter, so you can see more clearly what is happening now.

7.2 Repeatability

Alice: just to see the raw output, can you show me what a 3-body realization
looks like, of Plummer’s model?

Bob: Sure. Here is one:

|gravity> kali mkplummer2.rb -n 3
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121067273
ACS
NBody
Array body
Body body[0]
Float mass

3.3333333333333331e-01
Vector pos

-2.4675691264992146e-02 -4.5863250214480694e-01 -3.4228179847406209e-01

7.2. REPEATABILITY 71

Vector vel
-1.6299292153510764e-01 -6.3641128049507023e-01 4.6295378132640236e-01

Body body[1]
Float mass

3.3333333333333331e-01
Vector pos

6.1406677589641123e-01 -9.3993443405614524e-02 8.4365662813557107e-01
Vector vel

-3.0197909866323969e-01 1.3116581789850063e-01 3.3229437588090643e-01
Body body[2]
Float mass

3.3333333333333331e-01
Vector pos

-2.4231653275490286e-01 2.4335078786136193e+00 -6.8464691961851887e-01
Vector vel

9.0554061981191480e-02 1.3064778968874133e-02 4.9054107855329418e-02
SCA

Alice: I see that you are echoing the seed from random number generator, as
you explained before. Let us check whether we indeed can repeat the same
model generation. I’d be happy to just compare the last particle. What value
should we take for the seed of the random number generator?

Bob: 42.

Alice: Of course, that is the answer. But what a mundane question it was!

Bob: Different questions can have the same answer. Here is the first attempt:

|gravity> kali mkplummer2.rb -n 3 -s 42 | tail -2
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 42
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 42
-8.2466721106819674e-01 -1.2932107483556701e-01 1.9123288822171797e-01

SCA

And now let me repeat the command with the same seed:

|gravity> kali mkplummer2.rb -n 3 -s 42 | tail -2

72 CHAPTER 7. ENERGY CHECKS

==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 42
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 42
-8.2466721106819674e-01 -1.2932107483556701e-01 1.9123288822171797e-01

SCA

And now with a different seed:

|gravity> kali mkplummer2.rb -n 3 -s 43 | tail -2
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 43
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 43
-5.9589077735492635e-01 4.0502470785813344e-01 2.2612719197942369e-01

SCA

Alice: Good! And the full values from the first 3-body version look plausible.
But of course we cannot check, just by staring at them, whether they really
correspond to Plummer’s model. We’ll have to come up with some checks.

7.3 Energy Diagnostics

Bob: I thought about this checking question, so I cobbled together a tool to do
a quick energy check. Here it is:

#!/usr/local/bin/ruby -w

require "acs"

class Body

attr_accessor :mass, :pos, :vel

7.3. ENERGY DIAGNOSTICS 73

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

def ekin # kinetic energy
0.5*@mass*(@vel*@vel)

end

def epot(body_array) # potential energy
p = 0
body_array.each do |b|
unless b == self
r = b.pos - @pos
p += -@mass*b.mass/sqrt(r*r)

end
end
p

end

end

class NBody

attr_accessor :time, :body

def initialize
@body = []

end

def ekin # kinetic energy
e = 0
@body.each{|b| e += b.ekin}
e

end

def epot # potential energy
e = 0
@body.each{|b| e += b.epot(@body)}
e/2 # pairwise potentials were counted twice

end

def write_diagnostics
etot = ekin + epot
print <<END

E_kin = #{sprintf("%.3g", ekin)} ,\

74 CHAPTER 7. ENERGY CHECKS

E_pot = #{sprintf("%.3g", epot)} ,\
E_tot = #{sprintf("%.3g", etot)}
END
end

end

include Math

nb = ACS_IO.acs_read(NBody)
nb.write_diagnostics

This is all very similar to what we did within our N-body integrators.

7.4 Measurements

Alice: Let’s start with a few small realizations, to see how large the fluctuations
are from case to case, in the kinetic and potential energies, as well as the total
energy.

|gravity> kali mkplummer2.rb -n 10 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121337938
E_kin = 0.17 , E_pot = -0.354 , E_tot = -0.184

|gravity> kali mkplummer2.rb -n 10 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121448377
E_kin = 0.175 , E_pot = -0.225 , E_tot = -0.0498

|gravity> kali mkplummer2.rb -n 10 | kali energy.rb

7.4. MEASUREMENTS 75

==> Plummer’s Model Builder <==
Number of particles: N = 10
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121281565
E_kin = 0.101 , E_pot = -0.204 , E_tot = -0.103

Bob: Better to increase the number of particles, to see whether we actually
converge to something reasonable. An N = 1000 particle system should have√

N deviations around three percent or so.

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121588118
E_kin = 0.141 , E_pot = -0.282 , E_tot = -0.141

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121692054
E_kin = 0.148 , E_pot = -0.306 , E_tot = -0.158

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

76 CHAPTER 7. ENERGY CHECKS

actual seed used: 1121277835
E_kin = 0.152 , E_pot = -0.314 , E_tot = -0.163

Bob: Good enough! Also note that the virial theorem is obeyed quiet well:
the total energy has a magnitude comparable to the kinetic energy, and the
potential energy has a magnitude that is twice as large.

Alice: Yes, that is encouraging. The question is: are these magnitudes right?

Bob: Well, we can check by looking up what the kinetic and potential energy
should be for a Plummer model. But something tells me that you’d rather
compute it for yourself.

Alice: How did you guess! But we have to compute only one quantity. Since
we start with a model that is in equilibrium, we can assume the virial theorem
to hold, so as soon as we know one of the three energy diagnostics that you are
printing out here, we can determine the other two immediately.

Bob: In that case, the total potential energy of the system would seem to be
the best candidate.

Alice: I agree. We already know the density and the potential, so it is just a
matter of integration.

7.5 Two Roads

Bob: Let’s see. The total potential energy must be the sum of the potential
energy that each mass element feels, with respect to the rest of the star cluster:

Epot =
∫ ∞

0

ρ(r)Φ(r)4πr2dr

Alice: Ah, but now you’re double counting all pairwise interactions. You have
to divide this by a factor two:

Epot =
1
2

∫ ∞

0

ρ(r)Φ(r)4πr2dr (7.1)

Bob: I guess that is right, or is it? The more I think about it, I wonder. You are
talking about pairwise interactions, but we are letting each mass element feel
the rest of the cluster through the whole potential Φ(r). If I were to think about
pairwise interactions, I would immediately think about how the cluster can be
build up by bringing each new mass element in from an infinite distance. At first
there would be little mass, and later, when more and more mass is accumulated,
each new mass element feels more attraction, and gains more energy falling in.
Yet each mass element attracts, and is in turn attracted by the earlier mass that
already has fallen in. So . . . I admit, I’m a bit confused.

7.6. ONE DESTINATION 77

Alice: I’m sure it is wrong to leave out the factor two. in the above equation.
But I like the notion of building a cluster up, bit by bit. Given that we have
spherical symmetry, we can make life easiest by letting each radial shell fall in,
as if it was prefabricated. Like building a pre-fab house: you order the parts
and put it together.

Bob: So every shell with destination radius r and destination thickness dr then
has a mass 4πρ(r)r2dr. Even if the shell has a much lower density at first, and
perhaps a much larger thickness, and certainly a much larger radius, when it
settles in it must have that amount of mass, and since mass is conserved, this
must be the mass that the pre-fab shell had before it got compressed into place.
The term pre-fab is not a very good metaphor, perhaps, when we have to crunch
the components, but let’s not worry about words for now.

At the moment that the shell reaches its proper place, the material inside that
shell has already been put there, while the material outside that shell is still
waiting to fall in. So during the trip from an infinite distance with zero binding
energy, down to its final destination, the infalling shell acquires an amount of
potential energy of

− Gm(r)ρ(r)4πr2dr

r

Now if we look at it this way, and repeat the procedure for all mass shells from
the inside outward, we must have for the total potential energy:

Etop = −
∫ ∞

0

Gm(r)ρ(r)4πr2dr

r
(7.2)

And I’m sure that there is no factor two here, no matter what you may argue
about pairwise interactions.

Alice: Why do you call this energy top rather than pot?

Bob: Because I want to stress the difference with the expression you wrote
down above, and you already claimed the label pot. So I just reversed the
letters. Besides, my way of constructing the star cluster by letting mass rain
down from infinity is surely a top-down method.

Alice: As you wish. And I agree that there should not be a factor two in your
case, probably because on average, each mass element sees only half of the rest
of the mass. But I must admit, I’m not totally sure that both expressions are
correct. Why don’t we work them both out, and see whether they boil down to
the same result.

7.6 One Destination

Bob: You go first, since you wrote down the first expression. I’ll hand you the

78 CHAPTER 7. ENERGY CHECKS

expressions for the density and the potential, from way back when, eq. (1.9).
Here they are again:





Φ(r) = − GM

a

(
1 +

r2

a2

)−1/2

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2
(7.3)

Alice: Okay. Eq. (7.1) then becomes:

Epot =
1
2

∫ ∞

0

ρ(r)Φ(r)4πr2dr

= − 1
2

∫ ∞

0

3M

4πa3

(
1 +

r2

a2

)−5/2
GM

a

(
1 +

r2

a2

)−1/2

4πr2dr

= − 3
2

GM2

a4

∫ ∞

0

(
1 +

r2

a2

)−3

r2dr (7.4)

Before working this out further, let’s see whether you get at least the same
expression. Your turn!

Bob: I’ll try. I first need to recover the expression for the accumulative mass,
eq. (3.7):

m(r) = M

(
1 +

a2

r2

)−3/2

= M
r3

a3

(
1 +

r2

a2

)−3/2

(7.5)

where I added the right-hand term to make the expression more similar to the
expressions that give us density and potential. My top expression then becomes:

Etop = −
∫ ∞

0

Gm(r)ρ(r)4πr2dr

r

= −
∫ ∞

0

GM
r3

a3

(
1 +

r2

a2

)−3/2 3M

4πa3

(
1 +

r2

a2

)−5/2 4πr2dr

r

= − 3
GM2

a6

∫ ∞

0

(
1 +

r2

a2

)−4

r4dr (7.6)

Bob: Hmm. That doesn’t look like your expression.

Alice: It is more complicated than my expression, alright, but an integration
by parts may help out. May I try?

7.7. POTENTIAL ENERGY 79

Etop = − 3
GM2

a6

∫ ∞

0

(
1 +

r2

a2

)−4

r4dr

= − 3
GM2

a6

{
− a2

6

(
1 +

r2

a2

)−3

r3

∣∣∣∣∣

∞

0

+
∫ ∞

0

a2

6

(
1 +

r2

a2

)−3

3r2dr

}

= − 3
2

GM2

a4

∫ ∞

0

(
1 +

r2

a2

)−3

r2dr (7.7)

where the first term in the next-to-last line vanishes, because the contributions
at both zero and infinity are zero.

Bob: Thanks! Now it is clear that Etop and Epot are identically the same.

7.7 Potential Energy

Alice: All that is left to do is to solve it. Let me try another integration by
parts:

Epot = − 3
2

GM2

a4

∫ ∞

0

(
1 +

r2

a2

)−3

r2dr

= − 3
2

GM2

a4

{
− a2

4

(
1 +

r2

a2

)−2

r

∣∣∣∣∣

∞

0

+
∫ ∞

0

a2

4

(
1 +

r2

a2

)−2

dr

}

= − 3
8

GM2

a2

∫ ∞

0

(
1 +

r2

a2

)−2

dr (7.8)

where again the first term in the next-to-last line vanishes for the same reason
as before.

Now how shall we tackle this integral? I wonder how we can simplify this further.

Bob: Now this is really simple enough for my taste. Yesterday I let you get
away with going back to square one, but if we keep doing that, we’ll never build
an N-body environment.

We should be able to find this integral easily in a book with a table of integrals,
or by using a symbolic package. Ah, you see, here it is, in good old Abramowitz
and Stegun, right at the beginning of their list of most common integrals:

∫
dx

(x2 + a2)2
=

1
2a3

arctan
x

a
+

x

2a2 (x2 + a2)
(7.9)

Alice: Okay, I give in.

80 CHAPTER 7. ENERGY CHECKS

Bob: Substituting eq. (7.9) into eq. (7.8), we get:

Epot = − 3
8

GM2

a2

∫ ∞

0

(
1 +

r2

a2

)−2

dr

= − 3
8

GM2a2

∫ ∞

0

(
a2 + r2

)−2
dr

= − 3
8

GM2a2

{
1

2a3
arctan

r

a
+

r

2a2 (r2 + a2)

}∣∣∣∣
∞

0

= − 3
8

GM2a2

{
1

2a3

π

2

}

= − 3π

32
GM2

a
(7.10)

Alice: It looks plausible: at least it has the right dimensions and the right
dependency on mass and structural parameter.

7.8 Validation

Bob: I’m really curious to see whether my code gives the potential energy
that we have now calculated, at least within the statistical noise. In my code,
following Aarseth et al., I have G = M = a = 1, so I should find a value of

Epot = − 3π

32
≈ −0.2945

For the kinetic and total energy, we should similarly expect:

Ekin = −Etot =
3π

64
≈ 0.1473

Alice: And look, those are indeed the type of numbers we got. Why don’t you
create a few more 1000-particle realizations.

Bob: Here are a few more.

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16

7.8. VALIDATION 81

Incremental indentation: add_indent = 2
actual seed used: 1121596221

E_kin = 0.151 , E_pot = -0.295 , E_tot = -0.145

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121741448
E_kin = 0.14 , E_pot = -0.295 , E_tot = -0.154

|gravity> kali mkplummer2.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121571476
E_kin = 0.153 , E_pot = -0.309 , E_tot = -0.156

You’re right: the numbers work out beautifully.

Alice: Congratulations!

82 CHAPTER 7. ENERGY CHECKS

Chapter 8

Quartile Checks

8.1 Quartiles

Bob: Hi Alice, what’s next? I can think of a few further improvements to my
Plummer code, but do you have something specific, you’d like to add?

Alice: I’m happy that we have done this energy checking, which seems to in-
dicate that your code probably does produce Plummer’s model correctly. How-
ever, I’d like to be even more sure, since it would really be terrible if we somehow
would start our future simulations with the wrong initial conditions. That would
make debugging our evolution codes quite confusing, to say the least.

Bob: There are many ways to check things. The question is, what would be
the simplest way. Ah, how about just looking at mass shells, shells with a
certain mass fraction, and check that they have the correct radius? After all,
we computed the cumulative mass m(r) as a function of the radius already.

Alice: That is a good idea. For one thing, the half-mass radius should come
out with the correct value. And for good measure, we may as well compute
the quarter-mass radius and the three-quarter-mass radius. In other words: the
radii of the three quartiles, within which 1/4, 1/2, and 3/4 of the total mass are
enclosed.

Bob: That we should be able to do from scratch. We can start again with
minimal versions of the Body and Nbody classes, just enough to read a snapshot
in, and initialize anything properly. The only thing to do is to add a method
quartiles that prints out the three quartiles.

Fortunately, Ruby has a handy sort method, that comes with the Array class.
As usual, it has an associated sort! method that affects the array itself, unlike
sort that returns a new array. Let’s see. We have to sort the particles in radial
order, using r = |r|, the distance from the center. It will be easier to use the
square instead, r2 = r · r. This can be done in three lines:

83

84 CHAPTER 8. QUARTILE CHECKS

def order_squared_radii
a = []
@body.each{|b| a.push b.pos*b.pos}
a.sort!

end

The first line defines a to be an empty array. The second line fills the array with
the squares of the radial positions of all particles. Then the third line sorts that
array. Couldn’t be simpler!

8.2 Coding

Alice: Can I write the quartiles method? I’d like to get some more experience
with Ruby.

Bob: Here is the keyboard!

Alice: Since you have defined order squared radii as a member function,
we may as well define quartiles as a member function too. We can then
immediately invoke order squared radii to create our order list of particle
positions. All we have to do then is to cut the list in four equal parts, and
document the places where we cut the list. Hey, that is too simple to learn
much about Ruby! This should do the job:

def quartiles
a = order_squared_radii
n = a.size
r_1 = a[(n/4.0).round - 1]
r_2 = a[(n/2.0).round - 1]
r_3 = a[(n*3/4.0).round - 1]
print "The values of the three quartiles for r(M) are:\n"
print " r(1/4) = "
printf("%.4g\n", r_1)
print " r(1/2) = "
printf("%.4g\n", r_2)
print " r(3/4) = "
printf("%.4g\n", r_3)

end

Bob: I bet it does. I saw you looking up round: indeed, that is a predefined
method that rounds a floating point number to an integer. In case of a number
exactly in between, such as 2.5, it rounds up, to 3.0.

8.3. CODE 85

Alice: We could quibble about exactly where to choose the boundaries for the
quartiles. For example, for a four-particle system, things come out just right,
but for a five particle system, the half mass radius encloses 3/5 of the mass.
We could have take the average of the two-particle and three-particle distance,
but that would have been overkill, in my opinion. Anyway, the fluctuations in
the positions of the particles, in an N-body system will be of order

√
N À 1,

so we don’t have to worry about enclosing one particle more or less, at least for
N À 1.

8.3 Code

Bob: Let me print out the whole program, and write it out to a file called
quartiles1.rb:

require "acs"

class Body

attr_accessor :mass, :pos, :vel

def initialize(mass = 0, pos = Vector[0,0,0], vel = Vector[0,0,0])
@mass, @pos, @vel = mass, pos, vel

end

end

class NBody

attr_accessor :time, :body

def initialize
@body = []

end

def order_squared_radii
a = []
@body.each{|b| a.push b.pos*b.pos}
a.sort!

end

def quartiles
a = order_squared_radii
n = a.size
r_1 = a[(n/4.0).round - 1]

86 CHAPTER 8. QUARTILE CHECKS

r_2 = a[(n/2.0).round - 1]
r_3 = a[(n*3/4.0).round - 1]
print "The values of the three quartiles for r(M) are:\n"
print " r(1/4) = "
printf("%.4g\n", r_1)
print " r(1/2) = "
printf("%.4g\n", r_2)
print " r(3/4) = "
printf("%.4g\n", r_3)

end

end

include Math

nb = ACS_IO.acs_read(NBody)
nb.quartiles

8.4 Testing

Alice: Let’s try it out:

|gravity> kali mkplummer2.rb -n 100 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121018733
The values of the three quartiles for r(M) are:
r(1/4) = 0.7084
r(1/2) = 1.632
r(3/4) = 5.27

|gravity> kali mkplummer2.rb -n 100 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100

8.4. TESTING 87

pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121434922
The values of the three quartiles for r(M) are:
r(1/4) = 0.5708
r(1/2) = 1.519
r(3/4) = 4.008

|gravity> kali mkplummer2.rb -n 100 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121955786
The values of the three quartiles for r(M) are:
r(1/4) = 0.6959
r(1/2) = 1.691
r(3/4) = 3.594

Quite noisy. Not too surprising: for the inner quartile we are dealing with only
25 particles, so we should expect 1/

√
25 noise. Indeed, there are fluctuations of

about twenty percent in the first quartile.

Bob: Let’s try 10,000 particles instead:

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121166382
The values of the three quartiles for r(M) are:
r(1/4) = 0.6491
r(1/2) = 1.658
r(3/4) = 4.616

88 CHAPTER 8. QUARTILE CHECKS

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121466730
The values of the three quartiles for r(M) are:
r(1/4) = 0.6351
r(1/2) = 1.64
r(3/4) = 4.604

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles1.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121486792
The values of the three quartiles for r(M) are:
r(1/4) = 0.673
r(1/2) = 1.737
r(3/4) = 4.762

Not bad! Fluctuations of a few percent, at most, as it should be. Encouraging.

8.5 Checking the Math

Alice: Now let’s check the numbers. We have used already a few times eq.
(3.7):

m(r) = M

(
1 +

a2

r2

)−3/2

(8.1)

8.5. CHECKING THE MATH 89

Or in our units, with M = a = 1:

m(r) = r3
(
1 + r2

)−3/2
(8.2)

While we walked through your code, we reproduced the inverted form, express-
ing r(m), in eq. (3.3) as:

r(m) =
(
m−2/3 − 1

)−1/2

(8.3)

Bob: I have one problem with this kind of testing. First we write a code, using
the above equation. Then we test the code, using the same equation. This will
catch implementation bugs alright, but it won’t catch any mistake we might
have made in the above equation. In this case the equation is simple, but as a
general procedure, I’m not sure how much this really buys us.

Alice: Excellent point! And there is an easy check: Let us insert eq. (8.3) into
the right-hand side of eq. (8.2), to check whether we get the original amount
of mass back. Let us call the left-hand side of eq. (8.2) m̃, so that we can
distinguish it from the mass m we start with, in eq. (8.3):

m̃(r) = r3
(
1 + r2

)−3/2

=
(
m−2/3 − 1

)−3/2
(

1 +
(
m−2/3 − 1

)−1
)−3/2

=
(
m−2/3 − 1

)−3/2
((

m−2/3 − 1
)

+ 1
m−2/3 − 1

)−3/2

=
(
m−2/3 − 1

)−3/2 (
m−2/3

)−3/2 (
m−2/3 − 1

)3/2

= m (8.4)

This was an almost trivial exercise. But I’m glad we checked.

Bob: Yes, many bugs turn out to be ‘almost trivial’ as well, and yet the can
waste many hours of your time while you’re chasing them. By the way, wouldn’t
it have been much faster to substitute eq. (8.3) into the right-hand side of eq.
(8.1)? Calling the m(r) used in eq. (8.1) m̂(r), we would have gotten:

m̂(r) =
(

1 +
1
r2

)−3/2

=
(
1 +

(
m−2/3 − 1

))−3/2

=
(
m−2/3)

)−3/2

90 CHAPTER 8. QUARTILE CHECKS

= m (8.5)

Alice: You’re right, that is faster. And if we were to write a text book, we
would certainly hide the fact that we did it first the hard way around. But in
practice, who cares? The important thing is to check that things are correct.
And they are, we now know.

8.6 Checking the Code

Bob: Let’s compute the expected quartile radii, from eq. (8.3):

r(1/4) =
(
24/3 − 1

)−1/2

≈ 0.8111 (8.6)

r(1/2) =
(
22/3 − 1

)−1/2

≈ 1.305 (8.7)

r(3/4) =
(
24/33−2/3 − 1

)−1/2

≈ 2.175 (8.8)

Alice: Those numbers look completely different from what we got before! And
the strange thing is, the first number comes out too small, while the next ones
are too large, especially the last one. So it is not a matter of having overlooked
a scale factor, or something like that.

Bob: What a pity! I was more or less convinced that my Plummer code was
correct. Obviously there is something seriously wrong with the way particles
are sprinkled into space.

Alice: What is really strange is the fact that we got the energy correct. First
of all, the virial theorem did hold, something that is typically violated if you
make a random mistake in the energies, since it is unlikely that you will make
the same mistake in the kinetic as in the potential energy. But secondly, we
actually computed the energy, and we found that you code produced it correctly.

Bob: Yes, that is puzzling. Unless . . .

Alice: . . . unless my quartile code is wrong. But that is also very unlikely.
How much can there be wrong in just a few lines of code?

Bob: It wouldn’t be the first time, to find a nasty bug in a small codes. I guess
that’s why they are called bugs! Bugs are small, and can hide even in a code of
a single line. Let’s have a look.

Alice: Yes, the good thing of a small code is that it makes sense to go through
the lines one by one. And there less than ten lines here where actual calculations
are done.

8.7. CHECKING THE CODE-CHECKING CODE 91

8.7 Checking the Code-Checking Code

Bob: Let’s be systematic. The driver part calls quartiles, and that method
in turn starts by calling order squared radii. You like long names, do you?
You could have called it place an order to order squared radii.

Alice: Yes, I do like long names, since that way I will remember later what was
doing what. I hate that old style in which it probably would have been called
srtrsq for ‘sorting r squared’. Forty years ago there was a reason, when single
memory locations were expensive, but that excuse has long since gone.

Bob: Well, I can’t for the life of me see anything wrong with order squared radii.
Back to quartiles. In the second line you find the number of particles. Noth-
ing wrong with that either. In the third line you cut the list at the place of
the first quarter. Indeed, in that way you are bound to find the mass shell that
contains one quarter of the mass, and precisely the inner quarter.

Alice: Iron logic, and I, too, cannot see anything wrong with that.

Bob: So we both agree that a[(n/4.0).round - 1] returns what you have
ordered: the squared radius of the inner quarter of . . .

Alice: . . . the squared radius!!

Bob: Ah, yes, that’s the problem! You had forgotten that you ordered the
squares of the radial distances, for convenience. Instead, you just assigned the
values to the quartile radii themselves.

Alice: That must have been the problem. And that immediately explains why
the errors grew bigger for larger values of r. Okay, that is easy to fix. Let us
rewrite these three lines, and put the result in a file called quartiles.rb:

r_1 = sqrt(a[(n/4.0).round - 1])
r_2 = sqrt(a[(n/2.0).round - 1])
r_3 = sqrt(a[(n*3/4.0).round - 1])

And let’s test it right away:

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1120951904

92 CHAPTER 8. QUARTILE CHECKS

The values of the three quartiles for r(M) are:
r(1/4) = 0.8239
r(1/2) = 1.321
r(3/4) = 2.187

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121262995
The values of the three quartiles for r(M) are:
r(1/4) = 0.8089
r(1/2) = 1.312
r(3/4) = 2.183

|gravity> kali mkplummer2.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121011972
The values of the three quartiles for r(M) are:
r(1/4) = 0.7963
r(1/2) = 1.294
r(3/4) = 2.136

Bob: Wonderful! So my Plummer code was correct after all. But I’m glad we
checked so thoroughly.

Alice: You may laugh, and perhaps I’m getting to much addicted to testing,
but let me do one final little check. Having just made a really silly mistake with
the determining the quartile radii, I feel I cannot take anything for granted. Let
me see whether the quartile radii are really quartile radii. Starting with:

m(r) =
(
1 + r−2

)−3/2

We have

8.7. CHECKING THE CODE-CHECKING CODE 93

m(r(1/4)) =

(
1 +

((
24/3 − 1

)−1/2
)−2

)−3/2

=
(
1 + 24/3 − 1

)−3/2

= 2−2 = 1/4

Similarly with the half-mass radius m(r(1/2)) = 1/2, and:

m(r(3/4)) =
(
1 + 3−2/324/3 − 1

)−3/2

= 3.2−2 = 3/4

Bob: Now that is what I would call overkill. But you’re right, it doesn’t hurt,
and better safe than sorry.

Alice: Indeed!

94 CHAPTER 8. QUARTILE CHECKS

Chapter 9

Standard Units

9.1 Confusion

Alice: Now that we have a working and well-tested code to generate realizations
of Plummer’s model, we have decide how to scale the output. We simply started
with the coordinate system that was used by Aarseth and his friends, in which
G = M = a = 1. While that is a reasonable choice, there are other choices as
well.

The problem is: if we make one choice in one program, and another choice
in another program, we are inviting disaster. If you then put those programs
together, as different modules in a single larger context, you will generate non-
sense.

Bob: Well, let’s make a particular choice then, and stick to it.

Alice: What have you been using so far?

Bob: I have never settled on one particular choice. It depended always on
the problem at hand, the code I used to work with, and the preferences of my
collaborators.

Alice: People always underestimate the importance of standardization. It takes
some work, of course, for a community to settle on a standard. However, it takes
far more work if you always have to transform between different systems, even
in the unlikely case that you would not make mistakes. Scaling the results from
one system to the others is tricky.

Bob: Tell me! And what is more, my students. One thing students always
have great trouble with is scaling the results from an N-body simulation back
to physical quantities, expressed in physical or astrophysical units.

Alice: That is not surprising. And I must say, I often have to think careful
about such questions. It may be trivial, from a scientific point of view, but in

95

96 CHAPTER 9. STANDARD UNITS

practice, it is easy to make a mistake. It is one thing to get as an answer that
your star cluster retains a final mass of 0.765 at the end of a run, but it is quite
another to translate that into grams, or into solar masses.

Bob: At least the physical units are standardized. Mass comes in grams, or
in kilograms. It is annoying that there are still two sets of units in general use
in astrophysics, MKS and cgs, but at least the conversation between those two
is relatively straightforward, just a factor of a thousand in the case of masses.
And similarly, astrophysical units are standardized: mass general comes in units
of a solar mass. But in computer simulations, everybody is using whatever
convention they like.

In contrast, I find it often difficult to interpret the results that come from running
someone else’s code. Not everybody clearly documents what the units is they
have been using. I know, I know – I just told you that I have never settled on
a single system of units either. I wish there was such a system.

9.2 A Standard

Alice: But there is a standard for computer simulations in stellar dynamics.
And I have been using that standard ever since I started running simulations.

Bob: What are they called?

Alice: Hmm. They are generally referred to as ‘standard units.’ Perhaps that
is one reason that they haven’t found general acceptance yet. Maybe we should
give them a real name! They are sometimes also referred to as ‘Heggie units,’
since Douglas Heggie was the first one, as far as I know, to stress the need for
such standardization.

Bob: Did he publish the definition of his standards?

Alice: Yes, in a paper with Bob Mathieu, back in 1986, as a contribution to a
conference where this issue of standardization was discussed. The reference is
Standardised Units and Time Scales, by Douglas Heggie and Robert Mathieu,
and it appeared in 1986, on page 233 in The Use of Supercomputers in Stellar
Dynamics, edited by Steve McMillan and Piet Hut, and published by Springer.

Bob: How did they define their units?

Alice: They took the gravitational constant and total mass of a star cluster to
be unity, and they took the total energy to be -1/4.

Bob: Why one quarter? Unlike the first two choices, that doesn’t sound very
natural to me. Why not unity?

Alice: Actually, the origin of their definition stems from the fact that they took
the virial radius rV to be unity. I should have introduced their choice as:

G = M = rV = 1 (9.1)

9.3. MOTIVATION 97

The fact that Etot = −0.25 is a consequence from this fact.

Bob: I know the virial theorem, but what is a virial radius?

Alice: For an equal mass system, an elegant definition is: the virial radius is the
inverse of the average inverse distance between particles in an N-body system.
Expressed as a formula:

1
rV

=
〈

1
|ri − rj |

〉

i 6=j

(9.2)

averaged over all particle pairs i, j. For a general system of particles with masses
mi and total mass M, the definition is:

M

rV
=

∑

i

∑

j
j 6=i

mimj

|ri − rj |
(9.3)

and of course, we recognize that this is the potential energy of an N-body system,
for G = 1, apart for a factor of two, because we have now counted every pair
twice. So we can write the potential energy of an N-body system as:

Epot = −G
∑

i<j

mimj

|ri − rj |
= − 1

2

GM

rV
(9.4)

Bob: and now we can use the virial theorem, which tells us that the magnitude
of the total energy is half that of the potential energy, to write:

Etot = − 1
2Epot = − 1

4
GM

rV
(9.5)

and with our previous choice of G = M = 1, we get:

Etot = − 1
4

1
rV

(9.6)

Now I see what you meant, with the total energy of -1/4 being a consequence
the choice of G = M = rV = 1. But I’m still puzzled. What is so special about
the virial radius that you want to set it equal to unity? Why not set the total
energy equal to unity, say?

9.3 Motivation

Alice: I think that the original idea was that we would like to choose the most
natural units for the three basic physical units, namely those of mass, length,

98 CHAPTER 9. STANDARD UNITS

and time. But since we also like to scale the gravitational constant to unity,
we have only two degrees of freedom left over. The total mass is an obvious
candidate, since it appears in many equations as GM , which is nice to forget
about by equating it to 1. It also means that for equal-mass N-body systems,
you can count on each particle always having a mass of 1/N .

The only remaining question is: what to do with the last degree of freedom.
Do you want to find a natural length scale or a natural time scale, or do you
want to take a more derived quantity, not directly coupled to the basic physical
units, such as the energy? I for one agree with Heggie and Mathieu that it is
more elegant to choose a basic physical quantity, either a length or time scale.

Bob: I think I would prefer total energy, derived or not. But if you insist on
purity, well, a natural length scale for a star cluster is the half-mass radius rh.
And a natural time scale in turn is the crossing time th at the half-mass radius,
the typical time for a particle to cross the system, starting at the half-mass
radius.

Alice: It is already clear from your suggestion that choosing a length scale is
somewhat more natural than choosing a time scale, since in your time scale
definition you make use of an earlier length scale definition.

Bob: So what is wrong with the choice of G = M = rh = 1 ?

Alice: There is nothing wrong with that, and people have used that choice as
well. The problem is that in that case the total energy has a non-obvious value,
typically somewhere like Etot = 0.2, but not exactly.

Bob: Well, my original suggestion was to make Etot = 1. Not only is that an
exact number, it is a very simple number. I’m still not sure what is wrong with
that.

Alice: If you choose the total energy to be one, your half-mass radius comes
out to be very small, about 1/5, and that is not a very natural value.

Bob: Hmm, yes, it would be a bit of a nuisance, to deal with a core radius of
rc = 0.02, say, and then having to remember that we are dealing with a not
very concentrated cluster, since rh = 0.2 and therefore rc/rh = 0.1.

Alice: To sum up, we really would like to have a system of length units, in
which the half-mass radius is close to unity. However, the half-mass radius is
not a conserved quantity, and as soon as you start a simulation, the half-mass
radius may change. Therefore, it is better to take a conserved quantity, such as
the total energy, as a gauge, and to give it a simple value in such a way that
it implies that the unit of length is at least close to the half-mass radius. This
must have been the sort of thinking that went into the definition of the standard
units, I’m pretty sure.

Bob: That all makes sense. But in practice, the half-mass radius does not
change much, if you simulate a star cluster. Only after core collapse does the
half-mass radius begin to expand.

9.4. APPROXIMATIONS 99

Alice: You are used to dealing with a system that starts in dynamic equilibrium.
However, if you start with a cold collapse, or a system that has too much kinetic
energy and starts off expanding, in both cases the half-mass radius will change
right away, while the total energy will remain conserved.

Bob: Okay, I see the advantages of the standard units. And since I don’t feel
very strong about my other two candidates for standardization, I’m happy to
use those virial units, what did you call them, Heggie units?

Alice: Yes, were it not for the fact that Douglas Heggie is a modest gentleman,
who would be the first to point out that those units have been used by others
before he suggested them. Virial units might actually be a reasonable name; I
haven’t heard that expression yet.

Bob: Hmmm. It just slipped out, but to me it sounds too much like a medical
term, reminding me of a virus. And I certainly don’t like computer viruses. I
prefer the term Heggie units: he should get credit for his suggestion.

Alice: We’ll see what the field decides.

9.4 Approximations

Bob: By the way, I was impressed by the fact that you juggled those numbers
so easily, like that value 0.2 that you pulled out of a hat. What was that again?

Alice: That was the value for the half-mass radius, if you would insist on a
total mass of unity.

Bob: Ah yes, did you make that up to impress me, or did you calculate or
guestimate that quickly?

Alice: None of the above. Since I have been working with these standard units
for a long time, and especially since I have been teaching it to my students, some
of these numbers just stick in my mind. You mentioned from the start that
students always have problems with scaling, and my students are no exception.

Bob: I guess the counter-intuitive aspect is that if your ruler shrinks, everything
you measure becomes bigger, and similarly, if you take a ruler with larger units
of length, the whole world gets smaller, in terms of the values you read off.
Knowing where to multiply and where to divide is something that requires
some thought. With one ruler changing, you have to be careful, and if you
simultaneously change your ruler, your clock, and your scales, changing your
units of length, time, and mass, it is real easy to go wrong.

Alice: I know from experience! And still I always have to double check.

Bob: Glad to hear we share the same problem. And just to make sure that I
can buy into your story, scaring me away with having to handle tiny values for
the half-mass radius, shall we quickly check with Plummer’s model as a concrete
application how you can derive the numbers you mentioned?

100 CHAPTER 9. STANDARD UNITS

Alice: Good idea! It never hurts to check, as we’ve seen now already a number
of times. But I don’t like working with factors like 3π/16 and (22/3 − 1)−1/2.
Let’s make some simplifications, trying to use only fractions like 1/3 and 1/4
and the like, but let’s not get more accurate. That should be enough to show
our main point.

So let us start with the original expressions for the total energy Etot which we
may as well abbreviate as E, the half-mass radius rh and the virial radius rV ,
given in terms of the structural length a. Remember that a was what we first
encountered as the softening length, when we smoothed the potential of point
particles. In analogy, we started off with our Plummer potential

U(r) = −GM
1

(r2 + a2)1/2
(9.7)

We also computed the potential energy of Plummer’s model in eq. (7.10). The
virial theorem tells us that the total energy is just half that value:

E = − 3π

64
GM2

a
(9.8)

In terms of a, we can write, with G = M = 1:

E = − 3π

64
1
a

≈ 1
10

× 3
2

1
a

(9.9)

rh =
(
22/3 − 1

)−1/2

a ≈ 4
3
a (9.10)

rV =
16
3π

a ≈ 5
3
a (9.11)

The expression for the half mass radius rh we already determined earlier, in
(8.7), and the last result follows directly from eq. (9.6), which tells us that the
virial radius is rV = −1/(4E).

I have split off the factor 1/10 in the expression for the energy, so that we can
deal with remaining numbers that are all of order unity, in the form of fractions
of small integers.

All we have to do now is to choose different values for a. For each choice of
a, we can see explicitly how everything else will receive different values. The
structural length a plays the role of our ruler.

9.5 Three Round Numbers

Bob: That is a nice way to lay it all out. Okay, so we have talked about three

9.6. SURFACE DENSITY 101

choices of units, based on what we choose to set equal to one: the energy, the
half-mass radius, and the virial radius. Let us start with the energy

Alice: If we take E = 1, we are forced to take a = 3/20 which implies rh = 1/5
and rV = 1/4.

Bob: How simple! Yes, it is clear now, and you were right about that value
of roughly 0.2 for the half-mass radius. I’m curious to see what the other two
choices will lead to. Let us make a list:

E = −1 ⇒ rh ≈ 1/5, rV = 1/4 (9.12)

rh = 1 ⇒ E ≈ −1/5, rV ≈ 5/4 (9.13)

rV = 1 ⇒ E = −1/4, rh ≈ 4/5 (9.14)

Alice: Yes, that is a good summary, and it important to indicate which relations
are approximate and which are exact because the follow from the definitions.

Bob: And these are useful numbers to remember. Actually, now that we have
decided to adopt the ‘standard units’ as standard units (we have to come up
with a better name), it is only the bottom line that is really worth remembering.

Alice: And since E = −1/4 for all models in the standard units, for Plummer’s
model there is only one number to remember: the fact that the half-mass radius
is roughly 4/5.

Bob: Ah, but there is also the structural length. Let’s see, in standard units
that is roughly 3/5. That is a second useful number to remember, since it gives
a measure for the size of the core of the potential. So we have:

rV : rh : a ≈ 5 : 4 : 3 (9.15)

And this shows that Plummer’s model is not very centrally condensed: the core
is barely smaller than the half-mass radius.

Alice: Talking about central concentrations, it would be nice to throw in the
core radius as well, for good measure.

9.6 Surface Density

Bob: The problem with the core radius is that there are several definitions.
Which one do we choose?

Alice: There may be several, but the definition that I have seen used most often
is the one that appeals to observers: it defines the core radius at the position

102 CHAPTER 9. STANDARD UNITS

on the sky where the projected mass density Σ has dropped by a factor of two,
with respect to the central value. In other words

Σ(rc) = 1
2Σ(0)

Bob: It may be useful for observers, but for a theorist it is rather unnatural
do do a line-of-sight integration through a model. But I, too, have come across
this definition quite often, so let’s adopt it.

Alice: We’ll have to do the integral of course. Better first to draw a picture.

[We should put a picture here]

|
|
/|
/ |

r / | z
/ |
/ |

- - - o- - -+- - - - - -
d |

|
|

From this figure it is clear that the surface density, at projected distance d from
the center, is given by:

Σ(d) =
∫ ∞

−∞
ρ(r(z))dz

=
∫ ∞

−∞
ρ(

√
d2 + z2dz

=
3
4π

∫ ∞

−∞
(1 + d2 + z2)−5/2dz (9.16)

where I have used eq. (1.8) for the density.

Bob: Now before you will begin to solve this with pen and paper, let me give
you the answer, by using a symbolic manipulation program. Here it is: the
answer for the definite integral is 4/(3(1 + d2)2).

Alice: The impatience of youth! But okay, I’ll use your value. We then have:

9.7. MORE ROUND NUMBERS 103

Σ(d) =
3
4π

4
3

1
(1 + d2)2

=
1
π

1
(1 + d2)2

Bob: And if you want to see the complete dependence on the original variables,
dimensional analysis shows that:

Σ(r) =
M

πa2

(
1 +

r2

a2

)−2

(9.17)

where I have switched back to r notation.

9.7 More Round Numbers

Alice: We’re almost there: the core radius is defined as the place where the
surface density has dropped by a factor of two:

Σ(rc) = 1
2Σ(0) ⇒

(
1 +

r2
c

a2

)−2

= 1
2 ⇒

rc =
a√
2

(9.18)

So this is the value for the core radius.

Bob: And that gives us a third number to remember for Plummer’s model:

rV : rh : a : rc ≈ 5 : 4 : 3 : 2 (9.19)

Alice: I like that! An unlikely simple progression. I thought I knew Plummer’s
model by now, but I had not realized how simple the ratios for these main
numbers are. Okay, let’s remember them all!

Bob: Or, to be a bit more lazy, I may just remember that the half-mass radius
is twice as large as the core radius, that the structural radius lies about half-way
in between, and that the virial radius is a bit larger than the half-mass radius.

Alice: If we want to be really lazy, we should group all these results together,
so that we can later easily come back to look them up:

104 CHAPTER 9. STANDARD UNITS





rc = 2−1/2a

rh =
(
22/3 − 1

)−1/2

a

rV =
16
3π

a

(9.20)

Actually, what we really need is to know what these quantities look like in
standard units:





rc =
3π

16
1√
2

≈ 0.4165 ∼ 0.4

a =
3π

16
≈ 0.5890 ∼ 0.6

rh =
3π

16
1√

22/3 − 1
≈ 0.7686 ∼ 0.8

rV = 1 = 1 = 1

(9.21)

In the last column we recognize those nice round numbers we just discovered.
And while we’re at it, we may as well throw in the first and third quartile radii,
which we determined before, in eqs. (8.6) and (8.8):





r(1/4) =
3π

16
1√

24/3 − 1
≈ 0.4778 ∼ 0.5

r(3/4) =
3π

16
1√

24/33−2/3 − 1
≈ 1.2811 ∼ 1.3

(9.22)

Bob: That is a very useful collection of numbers. For example, it tells us
immediately that the core of Plummer’s model contains a little less than one
quarter of the total mass.

Also, if you are using softened particles, you may want to know how extended
the mass distribution is. These relations tell you that within one softening
length there is just a bit more than a quarter of the total mass, but that within
two softening lengths you already have almost three quarters of the total mass.

Alice: And if we agree to stick to these standard units, let us adapt your code,
so that it generates Plummer model realizations with the right units.

Bob: Okay, that should be easy.

Chapter 10

Two More Code Versions

10.1 Standard Units

Alice: In order to adapt your code mkplummer2.rb to standard units, we have
to change scales, both in position space and in velocity space. Let us start with
positions. In our old system, we had a structural length a = 1. In that system,
the virial radius was:

rV =
16
3π

Let us call this quantity our scale factor. In standard units, the virial radius
rV = 1. This means that we have to divide the virial radius by the scale factor,
when we switch from the old units to standard units.

Bob: And this means that all distances have to be scaled this way, since that is
the definition of a scale factor after all. I’ll copy the previous code in a file called
mkplummer3.rb, and add this scaling. That will take only two lines. Here, right
at the top of the mkplummer method, I’m adding this line:

scalefactor = 16.0 / (3.0 * PI)

Then at the place where we initialize the positions for each body, we have to
divide by that scale factor, just as we had to divide the virial radius by that
factor:

b.pos = spherical(radius) / scalefactor

Alice: That must be right. Now the velocity scaling is a bit more tricky. How
shall we approach that?

105

106 CHAPTER 10. TWO MORE CODE VERSIONS

Bob: Velocities come into the kinetic energy. Since the masses of the particles
are not affected, the velocities must scale like the square root of the energy.

Alice: Good point! The total mass of a cluster with N stars is unity, and
each star therefore has a mass of m = 1/N in both systems, or old system of
units, and the standard system of units. It is only a change in the magnitude
of their velocities that can make up for a change in kinetic energy – or in total
or potential energies, for that matter, since all these quantities are related.
And we know that the potential energy can only scale with the distances, since
G = M = 1 in both the old system and the new one.

Bob: In other words, we have for the potential energy of the cluster as a whole:

Epot ∝ 1
r

and

Ekin ∝ v2

Since they must remain proportional to each other, with the virial factor of two
between them, we know that

v ∝ r−1/2

Alice: That is an extremely sloppy notation, using r and v as arbitrary lengths
and velocities, but I see what you mean, and yes, obviously the square of the
velocities transform inversely proportional to the distances.

Bob: This means that I can add the following conversion factor to the code, at
the point where the velocities are calculated:

b.vel = spherical(velocity) * sqrt(scalefactor)

10.2 Checking Quartiles

Alice: That must be correct, but let’s make sure that we get the right energy
and the right quartiles again – and this time in standard units.

Bob: Let’s start with the quartiles:

|gravity> kali mkplummer3.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0

10.2. CHECKING QUARTILES 107

Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121299621
The values of the three quartiles for r(M) are:
r(1/4) = 0.4789
r(1/2) = 0.7741
r(3/4) = 1.313

|gravity> kali mkplummer3.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121190336
The values of the three quartiles for r(M) are:
r(1/4) = 0.4736
r(1/2) = 0.7708
r(3/4) = 1.264

|gravity> kali mkplummer3.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121868162
The values of the three quartiles for r(M) are:
r(1/4) = 0.4793
r(1/2) = 0.7672
r(3/4) = 1.284

Alice: These are indeed what we had derived a bit earlier, in eqs. (9.21) and
(9.22):

108 CHAPTER 10. TWO MORE CODE VERSIONS





r(1/4) =
3π

16
1√

24/3 − 1
≈ 0.4778

rh =
3π

16
1√

22/3 − 1
≈ 0.7686

r(3/4) =
3π

16
1√

24/33−2/3 − 1
≈ 1.2811

(10.1)

Well done!

10.3 Checking Energy

Bob: Now let’s see whether the energies come out standardized as well. That
should be easy to verify: in the standard units, the total energy should be -1/4.
Let’s check:

|gravity> kali mkplummer3.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121394037
E_kin = 0.245 , E_pot = -0.502 , E_tot = -0.257

|gravity> kali mkplummer3.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121881638
E_kin = 0.253 , E_pot = -0.506 , E_tot = -0.253

|gravity> kali mkplummer3.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0

10.4. QUIET START 109

Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121166834
E_kin = 0.252 , E_pot = -0.499 , E_tot = -0.246

Alice: Just as it should be, within the expected statistical errors of a few
percent. Great! Now we can generate a truly standard realization of Plummer’s
model.

10.4 Quiet Start

Bob: There are a couple other features I’d like to add to the code: a quiet
start, and center-of-mass adjustment. Let’s start with the first one.

In my original code, each star is given a position in the star cluster independently
of all other stars. If you make a small star cluster, it is possible that you wind up
with a significant excess of stars, in the core, say, or equally likely a significant
lack of stars, there or somewhere else.

I have found it helpful in some of my simulations to start in a more quiet way,
in which the stars are initially layered, each occupying a position somewhere in
their proper mass shell. In other words, you divide the N-body system as an
onion into N different concentric shells, centered on the center of the cluster,
and each having the same amount of mass. You then sprinkle one star into each
different shell.

Alice: I’m not sure whether that really helps. After you let the system evolve
for a while, you will soon develop fluctuations that obey Poissonian statistics.
You won’t keep your neat layering for long. As a matter of fact, within a small
fraction of the crossing time, your particles will visit other shells than the ones
they were born in.

Bob: That is true, but even so, I like to start with a more orderly bunch of
stars. For one thing, the quartiles will come out better initially.

Alice: I’m still not convinced that it will help, but it won’t hurt either. Go
right ahead!

Bob: I’ll copy the previous version in a new file mkplummer4.rb Now I have to
be careful. Given me a minute. Ah, this should do it. Here is the new
version of the mkplummer method:

def mkplummer(n, seed)
if seed == 0

110 CHAPTER 10. TWO MORE CODE VERSIONS

srand
else
srand seed

end
scalefactor = 16.0 / (3.0 * PI)
nb = NBody.new(n)
cumulative_mass_min = 0
cumulative_mass_max = 1.0/n
nb.body.each do |b|
b.mass = 1.0/n
cumulative_mass = frand(cumulative_mass_min, cumulative_mass_max)
cumulative_mass_min = cumulative_mass_max
cumulative_mass_max += 1.0/n
radius = 1.0 / sqrt(cumulative_mass ** (-2.0/3.0) - 1.0)
b.pos = spherical(radius) / scalefactor
x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end
velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)
b.vel = spherical(velocity) * sqrt(scalefactor)

end
STDERR.print " actual seed used\t: ", srand, "\n"
nb.acs_write

end

10.5 Quiet Indeed

Alice: Can you point out what you changed?

Bob: There are only two places where I added something. Before entering the
nb.body.each loop, I define the inner mass shell – in fact, an inner mass sphere;
the central layer is a sphere, and all the subsequent ones are shells – as follows:

cumulative_mass_min = 0
cumulative_mass_max = 1.0/n

Then, at the beginning of the loop, I pick a random value for the cumulative
mass within the constraint that the value for the cumulative mass has to lie
within the range present within the current mass shell:

cumulative_mass = frand(cumulative_mass_min, cumulative_mass_max)

10.5. QUIET INDEED 111

As soon as I have done that, I shift the boundaries of the mass shell up by one
shell, to make them ready for the next traversal of the loop:

cumulative_mass_min = cumulative_mass_max
cumulative_mass_max += 1.0/n

The last difference is that the radius is now determined from the value for the
cumulative mass that I had just found, rather than from using the random
number generator here directly:

radius = 1.0 / sqrt(cumulative_mass ** (-2.0/3.0) - 1.0)

Alice: How about testing the new version?

Bob: The total energy should remain unchanged, still -1/4. Here it is:

|gravity> kali mkplummer4.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121776593
E_kin = 0.249 , E_pot = -0.499 , E_tot = -0.251

Alice: Fair enough. And your quartiles should come out wonderfully accurate,
even for, say, 100 particles, by construction.

Bob: I hope so! Let’s try:

|gravity> kali mkplummer4.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121129606
The values of the three quartiles for r(M) are:
r(1/4) = 0.4682

112 CHAPTER 10. TWO MORE CODE VERSIONS

r(1/2) = 0.7573
r(3/4) = 1.275

|gravity> kali mkplummer4.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121037900
The values of the three quartiles for r(M) are:
r(1/4) = 0.4702
r(1/2) = 0.7607
r(3/4) = 1.261

|gravity> kali mkplummer4.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121218355
The values of the three quartiles for r(M) are:
r(1/4) = 0.4761
r(1/2) = 0.7554
r(3/4) = 1.265

Indeed, as expected. And of course it will be even more accurate for 10,000
particles:

|gravity> kali mkplummer4.rb -n 10000 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 10000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121670941
The values of the three quartiles for r(M) are:

10.5. QUIET INDEED 113

r(1/4) = 0.4778
r(1/2) = 0.7685
r(3/4) = 1.281

Alice: Quiet indeed. You have managed to shove the statistical noise under
the rug.

114 CHAPTER 10. TWO MORE CODE VERSIONS

Chapter 11

Centering

11.1 Center of Mass Adjustment

Bob: I could see that you were not too impressed with my quiet start. However,
I expect that you may be more interested in a more important improvement I
would like to make, the center of mass adjustment.

Alice: Indeed. I think it would be better to shift to a coordinate system in
which the newly created star cluster has its center of mass in the origin of the
coordinate system. In addition, it would be nice to give the coordinate system
a boost in such as way that the velocity of the center of mass is zero in that
coordinate system. Is this what you had in mind?

Bob: Exactly. It would of course be possible to sprinkle particles in space, and
in velocity space, in pairs, so that you would cancel the contributions: you could
place them at opposite sides of the center, and give them opposite velocities.
But that would create artificial correlations, and I don’t like to do that. Better
to create a realization first, and then to shift the coordinate system in the way
you suggested.

After creating our model, we measure the center of mass position rcom, which I
will name pos com in the code, as follows:

rcom =
∑N−1

i=0 miri∑N−1
i=0 mi

=
1
M

N−1∑

i=0

miri

and similarly for the velocity of the center of mass, which I will call vel com in
the code:

115

116 CHAPTER 11. CENTERING

vcom =
∑N−1

i=0 mivi∑N−1
i=0 mi

=
1
M

N−1∑

i=0

mivi

If we then subtract rcom from each particle’s position, and also subtract vcom

from each particle’s velocity, we will be guaranteed that rcom = vcom = 0. This
is then the shift that we ordered.

11.2 Implementation

Here is a straightforward implementation, in file mkplummer5.rb. At the end of
the mkplummer, after all the work is done, I am adding a line:

nb.adjust_center_of_mass

which invokes the following method:

def adjust_center_of_mass
vel_com = pos_com = @body[0].pos*0 # null vectors of the correct length
@body.each do |b|
pos_com += b.pos*b.mass
vel_com += b.vel*b.mass

end
@body.each do |b|
b.pos -= pos_com
b.vel -= vel_com

end
end

Alice: Straightforward indeed. Normally you would have to divide the positions
and the velocities by the total mass, but here the total mass is unity, so you can
skip that. Okay, that looks good, but as always, let’s first do a couple checks.

Bob: Never hurts. Here they are. First the energy:

|gravity> kali mkplummer5.rb -n 1000 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 1000
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16

11.3. A BIT DISQUIETING 117

Incremental indentation: add_indent = 2
actual seed used: 1121162456

E_kin = 0.252 , E_pot = -0.5 , E_tot = -0.247

That certainly looks fine. Now the quartiles:

|gravity> kali mkplummer5.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121202831
The values of the three quartiles for r(M) are:
r(1/4) = 0.4757
r(1/2) = 0.7678
r(3/4) = 1.278

11.3 A Bit Disquieting

Hmm, a bit less quiet than before, it seems. Let me try a few more:

|gravity> kali mkplummer5.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==
Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121683569
The values of the three quartiles for r(M) are:
r(1/4) = 0.506
r(1/2) = 0.8095
r(3/4) = 1.332

|gravity> kali mkplummer5.rb -n 100 | kali quartiles.rb
==> Plummer’s Model Builder <==

118 CHAPTER 11. CENTERING

Number of particles: N = 100
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121897664
The values of the three quartiles for r(M) are:
r(1/4) = 0.5149
r(1/2) = 0.8377
r(3/4) = 1.232

Definitely less quiet than before. How can shifting . . . ah, shifting the center
of mass also shifts the positions of my idealized mass shells which provided the
scaffolding for sprinkling particles in such a nicely layered way. Of course!

Alice: Yes, that must be the reason. Well, that’s the price you have to pay for
preventing your model for being off-center!

Bob: Perhaps layering was not such a hot idea after all. Oh, well. I may as
well leave it in, for now.

11.4 Checking the One-Body Problem

Alice: So far, so good, but we should check that the center of mass is indeed
in the center, and will stay there.

Bob: That may not be so easy to check, unless we write a new analysis tool to
report the center of mass position and motion.

Alice: And that tool would reflect the same equations you just entered in the
code, making it less of independent check.

Bob: Ah, wait a minute: we can look at a few-body system. Starting with one
body, it should sit happily in the center, and two bodies should now be placed
opposite each other, in position as well as in velocity.

Alice: Yes, of course. That’s a good way to check. Better first run those cases
with the version you created when you went to standard units, and then to
repeat them for your shifted version.

Bob: Okay, here is a one-body system without shifting:

|gravity> kali mkplummer3.rb -n 1
==> Plummer’s Model Builder <==
Number of particles: N = 1
pseudorandom number seed given: 0

11.4. CHECKING THE ONE-BODY PROBLEM 119

Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121107699
ACS
NBody
Array body
Body body[0]
Float mass

1.0000000000000000e+00
Vector pos

4.0030801221026430e-01 6.2316239542884255e-01 2.9677064179933660e-01
Vector vel

4.4246697807070601e-01 6.2748384356314668e-01 -4.4419086228003328e-02
SCA

and here with the proper center of mass shifts:

|gravity> kali mkplummer5.rb -n 1
==> Plummer’s Model Builder <==
Number of particles: N = 1
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121151880
ACS
NBody
Array body
Body body[0]
Float mass

1.0000000000000000e+00
Vector pos

0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
Vector vel

0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
SCA

Alice: Proper indeed.

120 CHAPTER 11. CENTERING

11.5 Checking the Two-Body Problem

Bob: And here for the two-body system, unshifted:

|gravity> kali mkplummer3.rb -n 2
==> Plummer’s Model Builder <==
Number of particles: N = 2
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1120947582
ACS
NBody
Array body
Body body[0]
Float mass

5.0000000000000000e-01
Vector pos

-6.3925366740848588e-02 -2.2286184429151873e-01 -2.4687560574789671e-01
Vector vel

-6.4965309944582572e-01 6.2522055067311033e-01 1.1883060056903667e-01
Body body[1]
Float mass

5.0000000000000000e-01
Vector pos

1.0728787442945829e+00 -1.9013375670284707e+00 1.3588502787616039e+00
Vector vel

-3.9280267316928152e-01 -1.3900154511700499e-01 1.7098212203155308e-01
SCA

and shifted:

|gravity> kali mkplummer5.rb -n 2
==> Plummer’s Model Builder <==
Number of particles: N = 2
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121008175

11.5. CHECKING THE TWO-BODY PROBLEM 121

ACS
NBody
Array body
Body body[0]
Float mass

5.0000000000000000e-01
Vector pos

-7.2805360002596053e-01 -7.0179348773174199e-01 -3.7159932313901634e-01
Vector vel

2.1458495599500804e-01 -1.7486136672282848e-01 1.0735958431029591e-02
Body body[1]
Float mass

5.0000000000000000e-01
Vector pos

7.2805360002596053e-01 7.0179348773174199e-01 3.7159932313901634e-01
Vector vel

-2.1458495599500804e-01 1.7486136672282851e-01 -1.0735958431029591e-02
SCA

Alice: Good! I believe the code now. We have acquired a well-adjusted codes
that speaks in standard units.

122 CHAPTER 11. CENTERING

Chapter 12

Scaling

12.1 Units Adjustment

Bob: We now have a code that produces particle positions and velocities, drawn
from a Plummer distribution function represented in proper standard units of
length, time, and mass, and properly centered at the center of mass, in position
as well as velocity. What more could we possibly want? I think we can call it a
day.

Alice: Before doing so, there is just one thing that is still bothering me. Even
though our Plummer realizations are now perfectly centered, their units are not
quite right.

Bob: But I thought we had checked that? Starting with mkplummer3.rb we
have made sure to use standard units.

Alice: Well, let’s see what happens for really low N values:

|gravity> kali mkplummer5.rb -n 3 -s 1 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 1
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1
E_kin = 0.382 , E_pot = -0.205 , E_tot = 0.177

|gravity> kali mkplummer5.rb -n 3 -s 2 | kali energy.rb
==> Plummer’s Model Builder <==

123

124 CHAPTER 12. SCALING

Number of particles: N = 3
pseudorandom number seed given: 2
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 2
E_kin = 0.0884 , E_pot = -0.329 , E_tot = -0.241

|gravity> kali mkplummer5.rb -n 3 -s 3 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 3
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 3
E_kin = 0.0624 , E_pot = -0.302 , E_tot = -0.239

|gravity> kali mkplummer5.rb -n 3 -s 4 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 4
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 4
E_kin = 0.29 , E_pot = -0.394 , E_tot = -0.104

Bob: Hmm, that doesn’t look like the desired total energy value of minus one
quarter. And I certainly don’t like the total energy to become positive! That
means that some of our realizations are actually unbound!

Alice: The problem is that, even though our underlying distribution function
has been scaled correctly, any small-number realization will introduce fluctua-
tions in the actual numbers that are picked out.

Bob: Ah, of course, this is just what happened with the center of mass. Even
though an ensemble of many realizations will shown the average center of mass
position and velocity values to be almost zero, individual realizations need to
be adjusted, as we just did. Similarly, we will have to rescale the positions and
velocities, to make any single realization come out with the right energy.

Alice: Effectively, we have to rescale length and time units; length for the
positions, and in addition separately time for the velocities.

12.2. IMPLEMENTATION 125

12.2 Implementation

Bob: Let’s create a new file. How about calling it mkplummer.rb, without a
number attached to it now, to show that this will be our final version, that we
can use as a work horse?

Alice: Hope springs eternal. But go ahead, we can always rename it to
mkplummer.rb6, like in a few minutes.

Bob: No, I think this will be really it. Well, we will see.

Alice: We have to do two separate things. Just getting the total energy to be
-1/4 is not good enough: we want to make sure that we have an accurate virial
equilibrium, with a kinetic energy of +1/4 and a potential energy of -1/2. This
is the reason that we have to scale length and time units separately.

Bob: In analogy with our way to adjust the center of mass, we can now adjust
the units. If I understand correctly what you just said, it should be this, right?

def adjust_units
alpha = -epot / 0.5
beta = ekin / 0.25
@body.each do |b|
b.pos *= alpha
b.vel /= sqrt(beta)

end
end

Alice: That indeed looks correct. And you invoke that function after you invoke
the center-of-mass adjustment.

Bob: Ah, yes, the order is important. Not for the potential energy, since that
only depends on relative distances. But the kinetic energy depends on the square
of the velocity differences between each particle and the center of mass. Good
point.

You know, let me modularize the mkplummer method a bit further. I’m sure you
would love that!

Alice: Any move to more modularity is welcome, within reason, but something
tells me you won’t unreasonably overshoot toward modularity.

Bob: You bet I won’t. But with all the adjustments we are now making, it
would seem more clear to isolate the actual sampling procedure in a separate
methods plummer sample, and to leave the rest of the administrative details to
the higher-level function mkplummer, which can deal with picking the right seed,
invoking the sampling function, pushing the sampling results on the stack, and
doing all the final adjustments.

126 CHAPTER 12. SCALING

Alice: You’re becoming a true modularity spokesman!

Bob: I’ll ignore that. This is just common sense.

Alice: Let’s hope it becomes more common.

12.3 Treating Even the Vacuum

Bob: Here is the top level method:

def mkplummer(c)
if c.seed == 0
srand

else
srand c.seed

end
nb = NBody.new
c.n.times do |i|
b = plummer_sample
b.mass = 1.0/c.n
b.body_id = i
nb.body.push(b)

end
nb.adjust_center_of_mass if c.n > 0
nb.adjust_units if c.n > 1
nb.acs_log(1, " actual seed used\t: #{srand}\n")
nb.acs_write($stdout, false, c.precision, c.add_indent)

end

and here is where the actual sampling is done, the place where a single particle
receives its initial position and velocity values, before they later will be adjusted:

def plummer_sample
b = Body.new
scalefactor = 16.0 / (3.0 * PI)
radius = 1.0 / sqrt(rand ** (-2.0/3.0) - 1.0)
b.pos = spherical(radius) / scalefactor
x = 0.0
y = 0.1
while y > x*x*(1.0-x*x)**3.5
x = frand(0,1)
y = frand(0,0.1)

end

12.4. BELLS AND WHISTLES 127

velocity = x * sqrt(2.0) * (1.0 + radius*radius)**(-0.25)
b.vel = spherical(velocity) * sqrt(scalefactor)
b

end

Alice: Ah, I see that you only invoke the adjust units method if you have two
or more particles. Of course, if you have only a single particle, then its velocity,
after adjusting it to the center of mass frame, will be zero.

Bob: Yes, I didn’t want to risk dividing by zero, and in any case, there is no
need to scale anything for a one-particle system already at rest.

Alice: But what is the meaning of the if statement for the center-of-mass
adjustment?

Bob: Oh, I thought I might as well make it work for any reasonable value,
including the vacuum, with zero particles. Without that clause, for c.n = 0 the
method adjust center of mass would try to set the length of the position and
velocity vectors of the center of mass to the same length as that of the position
vector of the first particle, which would be non-existent, and so you would get
an error message – even though the rest of the body of adjust center of mass
would work fine for zero particles.

Alice: I like building in such careful statements. Who knows, at some point
we may decide to build slews of N-body models with different particle numbers,
and it is nice to have them all behave well, for any reasonable and even not
so reasonable numbers, including 0. However, what will happen for negative
numbers?

Bob: I haven’t tested that. But when I look at mkplummer above, it would seem
that the do loop gets never executed, so effectively if will still give a zero-particle
system, without running into any more serious error.

Alice: That may or may not be what we want. In any case, we can discuss
more careful exception handling some other time.

12.4 Bells and Whistles

Bob: I agree. What next. Ah, let me take out this quiet start business. It was
an interesting idea, but as we noticed above, with center of mass adjustment it
will get partly screwed up anyway. Actually, I just realized a much more impor-
tant reason not to do a radial layering of particles. Pretty soon we may want to
give some particles extra properties. We could introduce a mass spectrum, or
promordial binaries, or what not. If we make sure that the original distribution
of particles is truly random, without any layering bias, we are less likely to wind
up with unrealistic distributions . . .

128 CHAPTER 12. SCALING

Alice: . . . such as having the lighter particles all in the center and the heavier
ones outside. Yes, I see what you mean. Let’s keep it simple and forget about
being too quiet.

Bob: Finally, we can use some of the bells and whistles that we have added
before, when we wrote the ACS I/O routines. There we allowed the user to
specify the number of digits accuracy and indentation prefered. If you’re dealing
with only a thousand particles, you may not want double precision, if that will
cut down your inital file length by a factor half. Let us test the options we have
provided:

|gravity> kali mkplummer.rb -h
Plummer’s Model Builder
-n --n_particles: Number of particles [default: 1]
-s --seed: pseudorandom number seed given [default: 0]
--verbosity: Screen Output Verbosity Level [default: 1]
--acs_verbosity: ACS Output Verbosity Level [default: 1]
--precision: Floating point precision [default: 16]
--indentation: Incremental indentation [default: 2]
-h --help: Help facility
---help: Program description (the header part of --help)

|gravity> kali mkplummer.rb -n 3 --precision 7 --indentation 4
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 7
Incremental indentation: add_indent = 4

actual seed used: 1121906419
ACS

NBody
Array body

Body body[0]
Fixnum body_id

0
Float mass

3.3333333e-01
Vector pos

-3.3047799e-01 1.8108063e-03 -2.1589544e-01
Vector vel

4.6545549e-01 4.5727802e-01 6.4065550e-01
Body body[1]

Fixnum body_id
1

12.5. CHECKING THE OUTPUT 129

Float mass
3.3333333e-01

Vector pos
4.6463133e-01 -3.3314261e-02 -7.3684688e-02

Vector vel
-4.2146316e-01 -4.1447711e-01 -5.4989155e-01

Body body[2]
Fixnum body_id

2
Float mass

3.3333333e-01
Vector pos

-1.3415334e-01 3.1503455e-02 2.8958012e-01
Vector vel

-4.3992326e-02 -4.2800903e-02 -9.0763950e-02
String story 4

actual seed used: 1121906419

SCA

Alice: Fine to have the extra freedom, but I doubt we’ll ever use it; as soon as
you start doing a run, you’ll probably want to keep the output to full precision.

Bob: In any case, at least for display purposes it all fits within the good old
VT100 80-column wide screen.

Alice: Which actually came from the 80-column punched card format. But
you’re too young to remember that.

Bob: Next time we go to a museum you can point out to me what the world
was like when you grew up.

12.5 Checking the Output

Alice: Let’s check again, starting with the zero-body problem, while working
our way up. And we might as well use your precision cap to keep it punched
card printable:

|gravity> kali mkplummer.rb -n 0 --precision 10
==> Plummer’s Model Builder <==
Number of particles: N = 0
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1

130 CHAPTER 12. SCALING

Floating point precision: precision = 10
Incremental indentation: add_indent = 2

actual seed used: 1121719654
ACS
NBody
Array body
String story 2

actual seed used: 1121719654

SCA

|gravity> kali mkplummer.rb -n 1 --precision 10
==> Plummer’s Model Builder <==
Number of particles: N = 1
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 10
Incremental indentation: add_indent = 2

actual seed used: 1121769073
ACS
NBody
Array body
Body body[0]
Fixnum body_id
0

Float mass
1.0000000000e+00

Vector pos
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

Vector vel
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

String story 2
actual seed used: 1121769073

SCA

|gravity> kali mkplummer.rb -n 2 --precision 10
==> Plummer’s Model Builder <==
Number of particles: N = 2
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 10
Incremental indentation: add_indent = 2

actual seed used: 1121082154

12.6. CHECKING THE ENERGY 131

ACS
NBody
Array body
Body body[0]
Fixnum body_id
0

Float mass
5.0000000000e-01

Vector pos
1.7260892977e-01 -1.7473077015e-01 4.6640275789e-02

Vector vel
-5.5353061715e-01 4.3879984662e-01 3.2535372815e-02

Body body[1]
Fixnum body_id
1

Float mass
5.0000000000e-01

Vector pos
-1.7260892977e-01 1.7473077015e-01 -4.6640275789e-02

Vector vel
5.5353061715e-01 -4.3879984662e-01 -3.2535372815e-02

String story 2
actual seed used: 1121082154

SCA

12.6 Checking the Energy

That all works as it should. Now an energy check:

|gravity> kali mkplummer.rb -n 0 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 0
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121171040
E_kin = 0 , E_pot = 0 , E_tot = 0

|gravity> kali mkplummer.rb -n 1 | kali energy.rb

132 CHAPTER 12. SCALING

==> Plummer’s Model Builder <==
Number of particles: N = 1
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1120991481
E_kin = 0 , E_pot = 0 , E_tot = 0

|gravity> kali mkplummer.rb -n 2 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 2
pseudorandom number seed given: 0
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1121342219
E_kin = 0.25 , E_pot = -0.5 , E_tot = -0.25

Looks good so far. Even the zero-body behaves! A single particle at rest in the
center has neither potential nor kinetic energy. And the two-particle realization
is nicely scaled to virial equilibrium.

Bob: Let’s try the same four realizations you made earlier, with the very same
seeds:

|gravity> kali mkplummer.rb -n 3 -s 1 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 1
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 1
E_kin = 0.25 , E_pot = -0.5 , E_tot = -0.25

|gravity> kali mkplummer.rb -n 3 -s 2 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 2
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1

12.6. CHECKING THE ENERGY 133

Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 2
E_kin = 0.25 , E_pot = -0.5 , E_tot = -0.25

|gravity> kali mkplummer.rb -n 3 -s 3 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 3
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 3
E_kin = 0.25 , E_pot = -0.5 , E_tot = -0.25

|gravity> kali mkplummer.rb -n 3 -s 4 | kali energy.rb
==> Plummer’s Model Builder <==
Number of particles: N = 3
pseudorandom number seed given: 4
Screen Output Verbosity Level: verbosity = 1
ACS Output Verbosity Level: acs_verbosity = 1
Floating point precision: precision = 16
Incremental indentation: add_indent = 2

actual seed used: 4
E_kin = 0.25 , E_pot = -0.5 , E_tot = -0.25

Alice: Good! Believe it or not, we may not need to call this version mkplummer6.rb,
after all. It may remain mkplummer.rb and become our standard initial condi-
tions generator.

Bob: I told you so!

134 CHAPTER 12. SCALING

Chapter 13

Literature References

A comparison of Numerical Methods for the Study of Star Cluster Dynamics,
by Sverre Aarseth, Michel Henon, and Roland Wielen, 1974, Astron. Astroph.
37, 183.

Galactice Dynamics, by James Binney and Scott Tremaine, 1987 [Princeton
University Press].

The Gravitational Million-Body Problem, by Douglas Heggie and Piet Hut, 2003
[Cambridge University Press].

Standardised Units and Time Scales, by Douglas Heggie and Robert Math-
ieu, 1986, in The Use of Supercomputers in Stellar Dynamics, edited by Steve
McMillan and Piet Hut [Springer], p. 233.

135

