
The Art of Computational Science

The Kali Code

vol. 3

Integration Algorithms:

Exploring the Runge-Kutta Landscape

Piet Hut, Jun Makino and Douglas Heggie

September 14, 2007

Contents

Preface 5

0.1 xxx . 5

1 First-Order Differential Equations 7

1.1 Starting at Square One . 7

1.2 Keeping it Simple . 8

1.3 Notation . 9

1.4 A Matter of Interpretation . 10

1.5 Taylor Series . 12

1.6 New Force Evaluations . 13

1.7 One Force Evaluation per Step 14

1.8 Two Force Evaluations per Step 15

1.9 A One-Parameter Family of Algorithms 17

2 Recycling Force Evaluations 19

2.1 One Force Evaluation per Step 19

2.2 What is Good Enough? . 20

2.3 Approximate Recycling . 22

2.4 Summary . 24

2.5 Two Force Evaluations per Step 25

2.6 Two Examples . 27

2.7 Recycle Conditions . 28

2.8 Remaining Freedom . 30

2.9 Summary . 31

3

4 CONTENTS

3 Second-Order Differential Equations 33

3.1 Formulating the Problem . 33

3.2 Vector Notation . 34

3.3 One Force Evaluation per Step 35

3.4 Not So Fast . 36

3.5 Forward Euler in Vector Form 37

3.6 Two Force Evaluations per Step 38

3.7 Putting Everything Together . 40

3.8 Summary . 41

3.9 Two Examples . 42

4 Partitioned Runge-Kutta Algorithms 45

4.1 One Force Evaluation per Step 46

4.2 xxx . 49

4.3 Two Force Evaluations per Step 54

5 Recycling Force Evaluations 59

5.1 One Force Evaluation per Step 59

5.2 Two Force Evaluations per Step 61

6 Literature References 71

Preface

In this volume, we present a pedagogic overview of the freedom one has in
choosing the coefficients in explicit Runge-Kutta integration schemes. We limit
ourselves to the simple cases in which there are at most two new evaluations of
the right-hand side of the differential equation per time step. We start with first-
order differential equations, to explain the general procedures, but then we limit
ourselves to the type of second-order differential equation that occurs in classical
mechanics, where the forces are dependent only on positions, and independent
of the velocities. In that case we derive some of the classical Runge-Kutta-
Nyström schemes, and generalize this to include a first evaluation that does not
take place at the beginning of a time step. We show how such a generalized
approach naturally leads us to the leapfrog-Verlet-Störmer-Delambre scheme,
as a particular form of a generalized explicit Runge-Kutta scheme.

0.1 xxx

We thank Kristin Cordwell and xxx for their comments on the manuscript.

Piet Hut, Jun Makino, and Douglas Heggie

5

6 CONTENTS

Chapter 1

First-Order Differential
Equations

1.1 Starting at Square One

Bob: It has been a lot of fun, to derive so many different algorithms and to
implement them all in our two-body code.

Alice: Yes, I enjoyed it too, and I must admit, I learned a lot in the process.
But I still have the feeling that I’m missing some basic pieces of insight. Do you
remember how we struggled, trying to prove that the Abramowicz and Stegun
formula was correct, the fourth-order Runge-Kutta-Nyström scheme that had a
misprint in it?

Bob: But you figured it out, didn’t you?

Alice: Well, yes, after a false start. And it was a bit alarming that at first
I didn’t even realize that it was a false start. And to be completely honest,
even now I’m not a full hundred percent sure that we got things right. Let
me put it this way, I feel that I haven’t yet gotten a finger-tip feeling for what
Runge-Kutta schemes are, and how they really tick.

Bob: There must be several text books that you can look at. Surely they will
explain things in more depth than you want to know.

Alice: I did look at some books on numerical methods, but none of them gave
me what I really wanted to see. Some of them were just too mathematical
in their concern and notation, others didn’t provide the type of real detail
that I wanted to see, yet others specialized on particular approaches. What I
really would like to see is a pedestrian approach, no attempt to design special
improvements. While I’m interested in all the extras, from embedded higher-
order schemes to using extrapolation methods and symplectic schemes and what

7

8 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

have you, I really would like to first understand the basics better.

Bob: You mean, just the straightforward Runge-Kutta schemes of relatively
low order, without any extra bells and whistles?

Alice: Exactly. Here is an idea. If we limit ourselves to performing at most
two new force calculations per time step, things can’t possibly get too complex.
Our Abramowicz and Stegun formula already had three force calculations per
time step, and I’m not suggesting that we explore explicitly the whole landscape
around that formula, at least not yet.

Bob: So you want to explore a smaller landscape, just to see in front of your
eyes how everything works. And while the simplest schemes, like forward Euler
and leapfrog, use only one new force calculation per time step, you want to
explore the full landscape of two new force calculations per time step. Hmm, I
like that. And I’m sure it would be good for our students too, to see such an
explicit survey.

Alice: I think so, but really, right now my main motivation is just for myself to
see exactly how those classical Runge-Kutta derivations are done, from scratch,
without taking anything on faith.

Bob: I like the idea, and I’m game. Where shall we start?

1.2 Keeping it Simple

Alice: One problem for astronomers using books on numerical solutions to dif-
ferential equations is that most books focus on first-order differential equations.
In contrast, we typically work with second-order differential equations, and of-
ten ones with special properties. The gravitational equations of motion for the
N-body problem, for example, have a force term that is independent of time
and velocity.

This suggests to me that we should divide our work into two stages. First we
try to figure out how to solve a general first-order differential equation, using
up to two force calculations per step. This will reproduce the results from the
standard text books, no doubt, but it will give us experience and will allow us
to establish a notation and a systematic procedure.

Then, in the second stage, we can cut our teeth on the gravitational N-body
system, to see what special methods will work there, and why, and how. The
Abramowicz and Stegun formula, for example, is tailored already to second-
order differential equations, albeit a general one in which there is still a possible
velocity dependence present in the force calculations. We can go one step fur-
ther, specializing to position dependence only, and just see what spectrum of
methods we will find.

Then, with a bit of luck, we will have gained enough experience to be able to
look over the horizon, to get an idea what you could do with, say, three new

1.3. NOTATION 9

force calculations per step, which is the landscape within which the Abramowicz
and Stegun formula was grown.

Bob: A somewhat ambitious project, but still quite doable, I think. You ba-
sically want to take the next step beyond forward Euler and leapfrog, in any
possible direction, and see the dimensionality of the space of possible directions.

Alice: Something like that, yes. But let us restrict ourselves, at least at first,
to Runge-Kutta methods. This will mean no multi-step methods, such as the
original Aarseth scheme. It also means that we won’t use higher derivatives,
such as the Hermite scheme. In addition, we will exclude the use of implicit
methods, which require iteration.

Bob: You could argue that, with two new force calculations per time step, you
should allow implicit schemes that have just one new force calcuation per time
step.

Alice: You could, even though it is not immediately clear that one iteration will
provide you sufficiently rapid convergence. Also, the resulting class of implicit
schemes is rather restricted. Perhaps we can look at that later. For now, I really
want to be austere and stay to the absolute basics.

Bob: Okay: explicit Runge-Kutta methods using up to two new force calcula-
tions per time step, and no evaluations of jerks or anything else.

1.3 Notation

Alice: Let us start by choosing a specific notation. For the simplest form of
differential equation, we can write:

dx

dt
= f(x) (1.1)

where we will call the variable x the position and the variable t the time. The
solution of this equation is given by x(t). When we solve this equation numeri-
cally, we use a finite time step τ . For now, we will analyze the properties of the
first time step. We choose t = 0 at the beginning of the first time step, and we
denote the positions at the beginning and end of the first time step by x0 and
x1 , respectively:

x0 ≡ x(0) ; x1 ≡ x(τ) (1.2)

We can introduce the usual notation where a dot over a variable indicates the
time derivative and a prime indicates the space derivative:

ẋ ≡ dx

dt
≡ d

dt
x(t) (1.3)

10 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

f ′ ≡ df

dx
≡ d

dx
f(x) (1.4)

If we now want to determine the time derivative of the force, we can use the
chain rule, differentiating the force first with respect to its argument x, and
multiplying the result with the time derivative of x:

ḟ ≡ d

dt
f(x(t)) =

dx

dt
f ′ = ẋf ′ (1.5)

For the various derivatives of the position, we can introduce the historical nota-
tion in terms of velocity, acceleration, jerk, snap, crackle and pop, respectively:

v ≡ ẋ = d
dtx(t) ; a ≡ v̇ = d 2

dt2 x(t) ; j ≡ ȧ = d 3

dt3 x(t)

s ≡ j̇ = d 4

dt4 x(t) ; c ≡ ṡ = d 5

dt5 x(t) ; p ≡ ċ = d 6

dt6 x(t)
(1.6)

These expressions are especially useful for the type of second-order differential
equation encountered in classical mechanics:

ẍ ≡ d 2x

dt2
= f(x) (1.7)

which can be written as a system of two first-order differential equations:

{
ẋ = v
v̇ = f(x) (1.8)

However, for now we will stick to the first-order differential equation, using the
general expression that we started with, but without any explicit time depen-
dence.

1.4 A Matter of Interpretation

Bob: Even though this is just a warming-up exercise, it would be nice to give
a physical interpretation to the first-order differential equation that you wrote
down:

dx

dt
= f(x) (1.9)

You have been calling f(x) a force, but that doesn’t seem right. This equation
tells us that the velocity is prescribed, and equal to f(x). A true force would
give rise to an acceleration, not a velocity.

1.4. A MATTER OF INTERPRETATION 11

Alice: In principle that is correct, but in practice, if we have a lot of resistance,
it is the velocity that is proportional to the force. If you move a spoon through
molasses, you have to push twice as hard to go twice as fast.

Bob: But even in that case, the initial acceleration must still be proportional
to the applied force.

Alice: Yes, but only very briefly. As soon as you pick up a very small amount
of speed, friction starts to resist, canceling part of your force. So after the initial
transients die out, the velocity settles to a constant value, proportional to the
force you use. From than on, in the limit of changes that are slow with respect
to the duration of the transients, the acceleration is proportional to the rate of
change of the force, not to the magnitude of the force.

Bob: I don’t like the idea of posing a problem, and then neglecting the inter-
esting part of the solution, namely the transients.

Alice: So for once you are looking for a more clearly abstract model; I thought
you would like a quick and dirty physics example!

Bob: Molasses may indeed be too dirty for me. Why don’t we stick with
considering f(x) as a velocity.

Alice: But the left hand side of the differential equation is a velocity. The right-
hand side has to be something else. In Newtonian dynamics we have f = ma,
which means that the acceleration is proportional to the net force acting on the
body. You now want to have a velocity, but you have to specify what it is that
is imposing itself on your particle to produce that velocity.

Bob: Well, yeah, hmmm, let’s see, that’s not so clear.

Alice: Forgive the pun, but why don’t we stick to molasses?

Bob: Ah, I got it! Hey, elementary, my dear Watson. If a particle would be
rolling down a potential well, without any friction, the total energy would be
constant. If we write Φ(x) for the potential energy per unit mass, and E for the
total energy per unit mass, then the velocity can be expressed as:

v(t) =
√

2E − Φ(x(t)) (1.10)

Alice: Bravo, that works. Interesting. I hadn’t even considered such a possi-
bility, probably because I started out calling f(x) a force from the beginning.

Bob: Okay, so we’re talking now about a particle in a potential well.

Alice: You may, but I still prefer to talk about molasses, since in that case we
can make a more smooth transition to the case of a second order differential
equation.

12 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

1.5 Taylor Series

Bob: I still prefer my interpretation. Let’s just agree to disagree.

Alice: Fine with me, since, after all, the math will be the same.

Bob: Exactly. Okay, let’s get to work. You have struggled with these things a
lot more than I have. How do we get started?

Alice: We want to check the quality of any given numerical approximation
scheme to the solution of our differential equation. In order to do so, we can
compare such a scheme with a Taylor series development of the true solution,
around the starting point of our one integration step.

In other words, we can express the position at the end of one time step in the
following Taylor series:

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + 1
24s0τ

4 + O(τ5) (1.11)

The velocity at time zero is given directly by the differential equation. The
higher derivatives of the position, starting with the acceleration, can be found
by differentiating both sides of the differential equation, one or more times. This
leads to expressions such as:

v0 = f(x(0)) = f(x0) = f0

a0 =
d

dt
v(t)

∣∣∣∣
t=0

=
d

dt
f(x(t))

∣∣∣∣
t=0

=
df(x)
dx

∣∣∣∣
x=x0

dx

dt

∣∣∣∣
t=0

= f ′
0v0 = f ′

0f0

j0 = ȧ0 = f2
0 f ′′

0 + f0(f ′
0)

2

s0 = j̇0 = f3
0 f ′′′

0 + 4f2
0 f ′

0f
′′
0 + (f ′

0)
3f0 (1.12)

The last two lines can be derived in the same way as the second line, by fully
writing out the differentiations, using the chain rule.

By the way, here the acceleration comes out nicely as the rate of change of the
force applied, as would happen for a spoon moving slowly through molasses.

Bob: That would take a lot of getting used to! For me, the acceleration is just
the rate of change of the velocity.

Alice: But isn’t that a tautology? After all, the acceleration is by definition
the rate of change of the velocity, as a mathematical construction. I thought we
were trying to come up with a physical system as an example.

Bob: But a potential well is surely a physical system! And what I thought is
that we had agreed to disagree.

1.6. NEW FORCE EVALUATIONS 13

Alice: I agree!

1.6 New Force Evaluations

Bob: Me too. Coming back to our task, I like the systematic approach idea,
of using up to two new force evaluations per time step. Well, this gives us two
choices: either one or two force evaluations.

Alice: Actually, there are four choices. In each case, we can try to recycle a
previous force calculation in the next step, or we don’t.

Bob: You mean that you use the last force calculation, at the end of a given
step, as the first force value that you use for the next step?

Alice: Exactly. And this will put rather strict conditions on the nature of that
force calculation.

Bob: It means, of course, that a force calculation needs to take place at the
boundary of two steps, otherwise you can’t recycle it. But that doesn’t seem to
be a particularly severe restriction to me.

Alice: In principle, you could even recycle a force that is used in the middle,
if you would be willing to used the remembered values of the previous step,
you could still recycle. However, that would mean that we would go beyond
Runge-Kutta methods, and enter the area of multi-step methods.

Bob: Let’s not get into that, at least not know. I’d be happy to first explore
the landscape of Runge-Kutta algorithms. Okay, as long as we let our last force
calculation occur at the end of a step, we can recycle that calculation for the
next step.

Alice: Oh, no, it’s not that simple. In a general Runge-Kutta approach, you
compute a few forces here and there, and only after doing that, you combine
those forces in such a way as to get a combination of them, to give you a value
of the new position accurate to high order.

Now the force that you would evaluate at that new position, at the beginning
of the next time step, will in general not be the same as the force that you have
calculated at the end of the current time step. Even though it was evaluated at
the same time, it will in general be evaluated at a slightly different place. The
reason is that at the time of evaluation, you didn’t yet have in hand the most
accurate estimate for the new position.

Bob: Hmm, that’s tricky. I hadn’t thought about that.

Alice: I hadn’t either, until I started playing with some of those schemes in
detail. All the more reason to take a really pedestrian approach, and just write
everything out, to make sure we’re not overlooking something or jumping to
conclusions!

To start with, let us not try to recycle any forces. Within that category of

14 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

attempts, we will first investigate what can happen when we allow just one
force evaluation per step, and then we will move on to two force evaluations per
step. After that, we’ll look at recycling.

Bob: Fair enough!

1.7 One Force Evaluation per Step

Alice: At the start of a time step, the only evaluation of the right-hand side of
the differential equation that is possible is the one at t = 0:

k1 = f(x0) (1.13)

This leads to the following dimensionally correct expression:

x1 = x0 + α1k1τ (1.14)

Combining the last two equations, we have

x1 = x0 + α1f0τ (1.15)

We can compare this expression with our Taylor series:

x1 = x0 + v0τ + 1
2a0τ

2 + O(τ3) (1.16)

Using Eqs. (1.12) we can write this as

x1 = x0 + f0τ + 1
2f0f

′
0τ

2 + O(τ3) (1.17)

How accurate is our new value x1 after we take one step? Let us see how well we
can match Eq. (1.15) with Eq. (1.17), in successive powers of τ . The constant
term x0 matches trivially, and our first condition arises from the term linear in
τ :

α1f0 = f0 (1.18)

hence

α1 = 1 (1.19)

Equation 1.19 looks ok.

We have no free parameter left, so this leads us to the only possible explicit
first-order integration scheme

1.8. TWO FORCE EVALUATIONS PER STEP 15

x1 = x0 + k1τ

k1 = f(x0)
(1.20)

which is the forward-Euler algorithm. This scheme is only first-order accurate,
since it cannot possibly reproduce the O(τ2) term in Eq. (1.17): such a match
would require 1

2f0f
′
0 = 0 , which is certainly not true for general force prescrip-

tions.

Bob: Of course, forward Euler is the simplest possible scheme. It is what
anyone would have guessed, if they had guessed any scheme at all

Alice: That may be true, but I, for one, like to see a derivation for any integra-
tion scheme, even the simplest and humblest of them all. It is all nice and fine
to say that something is intuitively obvious, but I am much happier if you can
prove that something is not only simple, but actually the simplest, and under
certain plausible restrictions, the only one of its kind.

Bob: Can’t argue about taste. I can see your point, but any good point can be
pressed to extremes. Well, as long as you do the calculating, I’ll sit back and
relax.

1.8 Two Force Evaluations per Step

Alice: Now we can move to more interesting venues, when we allow two force
evaluations per step. After a first evaluation of the right-hand side of the differ-
ential equation, we can perform a preliminary integration in time, after which
we can evaluate the right-hand side again, at a new position:

k1 = f(x0) (1.21)
k2 = f(x0 + ηk1τ) (1.22)

We can now use a more general expression for the new position, in which we
rely on the preliminary information that has been gathered in the two force
evoluations. Since each force evaluation has the dimension of a time derivative
of the position, we have to multiply each one with a single power of τ . The
coefficient for each term is, as yet, arbitrary, so let us parametrize them as
follows:

x1 = x0 + (α1k1 + α2k2) τ (1.23)

We can combine these equations, and write them as

x1 = x0 + {α1f0 + α2f(x0 + ηf0τ)} τ (1.24)

16 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

Bob: Our strategy is again to compare this expression with a Taylor series
defined at the start of the time step, right?

Alice: Yes. And since that Taylor series for x1 is defined as a series in τ , we
must somehow translate the above expressions, too, a series in τ , around τ = 0.

Bob: The main obstacle here is k2 , which itself involves an expression that
depends on τ .

Alice: The solution here is that we can develop k2 itself in a Taylor series
around τ = 0. In general, for any function of , we can write the Taylor series
for a position x + ε near x as:

f(x + ε) = f(x) + εf ′(x) + 1
2ε2f ′′(x) + O(ε3) (1.25)

In our particular case, this gives us:

k2 = f(x0 + ηf0τ) = f0 + (ηf0)f ′
0τ + 1

2 (ηf0)2f ′′
0 τ2 + O(τ3) (1.26)

We thus find for the new position, at the end of our time step:

x1 = x0 + (α1 + α2)f0τ + α2ηf0f
′
0τ

2 + 1
2α2η

2f2
0 f ′′

0 τ3 + O(τ4) (1.27)

We can now compare this expression with the Taylor series expansion of the
true orbit:

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + O(τ4) (1.28)

Using Eq. (1.12), we can write this as

x1 = x0 + f0τ + 1
2f0f

′
0τ

2 + 1
6

{
f2
0 f ′′

0 + f0(f ′
0)

2
}

τ3 + O(τ4) (1.29)

To what order can we make Eqs. (1.27) and (1.29) compatible? Starting with
terms to first order in τ , we have to insist that

(α1 + α2)f0 = f0 (1.30)

which leads to the condition

α1 + α2 = 1 (1.31)

To second order in τ , we would like to satisfy:

α2ηf0f
′
0 = 1

2f0f
′
0 (1.32)

1.9. A ONE-PARAMETER FAMILY OF ALGORITHMS 17

which can be done through the condition

η =
1

2α2
(1.33)

Would it be possible to match Eqs. (1.27) and (1.29) also to third order in τ ?
This would require

1
2α2η

2f2
0 f ′′

0 = 1
6

{
f2
0 f ′′

0 + f0(f ′
0)

2
}

(1.34)

While we can match the first term on the right-hand side, by choosing α2η
2 =

1/3 , this would require that f0(f ′
0)

2 = 0 , which is not true for general force
prescriptions.

1.9 A One-Parameter Family of Algorithms

Bob: So we have to conclude that our scheme is only second-order accurate.
That makes sense: with one force evaluation, we got a first-order scheme, and
with two force evaluations, we get a second-order scheme. Presumably with p
force evaluations, you get a scheme that is accurate to order p.

Alice: I would have guessed so too, but this is not so. Your guess is correct for
order 3 and 4, but it turns out that you need 6 force evaluations to build an
algorithm that is accurate to order 5!

Bob: That is surprising!

Alice: It is, until you realize that you get more and more equations that you
have to satisfy. The number of such conditions grows quite a bit faster than the
the number of force calculations. This is not yet obvious in what we have done,
but if will become obvious pretty soon. In general, there are a lot of complicated
combinatorial surprises in Runge-Kutta derivations.

Bob: Fascinating. But for now, at least, it seems that going to higher order
gives us more freedom, rather than less. Unlike the first-order case, we now
have an extra parameter to play with.

We started with three free parameters, α1 , α2 , and η. Since we only have the
two boxed conditions above, we can expect to be left with one degree of freedom
in choosing the coefficients in our algorithm.

Alice: Well, let’s check. If we define α ≡ α2 , we find:

α1 = 1 − α
α2 = α
η = 1/(2α)

(1.35)

18 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

We thus obtain the following one-parameter family of algorithms:

x1 = x0 + ((1 − α)k1 + αk2) τ

k1 = f(x0)
k2 = f(x0 + 1

2αk1τ)

(1.36)

Bob: Ah, this is nice. I recognize some of the algorithms that I’ve been using
in the past. One classical choice for a second-order Runge-Kutta is α = 1

2 ,
leading to:

x1 = x0 + 1
2 (k1 + k2) τ

k1 = f(x0)
k2 = f(x0 + k1τ)

(1.37)

This one goes under the name ‘improved Euler scheme.’

Another classical choice is α = 1 , which gives:

x1 = x0 + k2τ

k1 = f(x0)
k2 = f(x0 + 1

2k1τ)

(1.38)

This integration scheme is called the ‘midpoint scheme.’

Alice: Yes, and now we have given a derivation for why they work. In general,
for higher-order algorithms, you have to follow such a derivation to convince
yourself that the recipe has the order that is claimed for it. However, in this
second-order case, you can still use your intuition to convince yourself that the
expressions are okay.

For α = 1
2 , we effectively average the evaluations at the beginning and at the

end of the trial step, and you can imagine that this gives you one extra order of
accuracy, since you effectively cancel the types of error you would make if you
were using a force calculation only at one end of the step.

Similarly, for α = 1 , we use the evaluation at the end of a smaller trial step
that brings us approximately mid-way between the beginning and the end of
the step. Then, at that point, we again obtain an estimate for the average of
the forces at begin and end of the time step.

Chapter 2

Recycling Force Evaluations

2.1 One Force Evaluation per Step

Alice: So far, we have used up to two force calculations per time step, indepen-
dently of what has been done in the previous time step. As we discussed before,
there are situations in which we can recycle a previous force calculation.

To be specific, taking the result from the previous section, Eq.(1.36)

x1 = x0 + ((1 − α)k1 + αk2) τ

k1 = f(x0)
k2 = f(x0 + 1

2αk1τ)

(2.1)

would it be possible to use the force evaluation k2 of the first step, and to recycle
its use, to let it function as the k1 contribution to the second step?

Bob: Not really, no. At least, I don’t think so. The first force calculation
for the second step will be evaluated at x1 , the end point of the first step.
However, the last force calculation for the first step was not evaluated at that
exact point. Rather it was evaluated at the point that was reached by using
only the information given by k1.

Alice: In general, you must be right. But let’s not jump to conclusions; the
whole point of our systematic approach is to really make sure that our hunches
are correct, by deriving everything to the point of reaching absolute certainty.

Bob: what you call systematic others may call tedious, or worse.

Alice: So be it; I just want to be sure. So, for recycling to work in the strict
sense, the position at which k2 is calculated during the first step should coincide
with the position at which k1 needs to be calculated during the second step. Let
us define that first position as x̃1 , which means that k2 ≡ f(x̃1) , which implies

19

20 CHAPTER 2. RECYCLING FORCE EVALUATIONS

x̃1 = x0 +
1
2α

k1τ (2.2)

Recycling the last force calculation from the first step, in order to use it for the
second step, requires that x̃1 = x1:

x0 +
1
2α

k1τ = x0 + ((1 − α)k1 + αk2) τ (2.3)

or

k1 = 2α ((1 − α)k1 + αk2) (2.4)

or

2α2 (k1 − k2) = (2α − 1)k1 (2.5)

Since our algorithm should work for any force f(x) , this expression should hold
for arbitrary values of k1 and k2. If we first look at the dependence on k2 , we
find 2α2k2 = 0 and therefore α = 0. But this then implies that k1 = 0 , which
is not true in general.

So here is the formal check that your hunch was right!

Bob: This result is not surprising, when we reflect on what it means: if the
equality x̃1 = x1 would hold exactly, there would be no reason to compute the
last force evaluation. For this reason, there should not be any Runge-Kutta
scheme that allows strict recycling of a force evaluation, come to think of it.

2.2 What is Good Enough?

Alice: That must be right. The best we can hope for is that x̃1 is reasonably
accurate as a predicted value, good enough, so to speak. Now the question is
whether we can find a precise meaning for ‘good enough.’ What does it mean
for x̃1 not to differ too much from the corrected value x1 ?

Bob: Lookinging at Eq. (2.5) as a physicist, rather than a mathematician, I
would start by noting that k1 ≈ k2 , at least in the limit of a small time step.
This suggests that the best we can do is to let the right hand side disappear,
through the choice α = 1

2 . In that case, the left-hand side will still not be
exactly zero, but it will be small.

Alice: Even though you’re a physicist, you should at least show that this choice
brings x̃ and x close together. Handwaving alone is certainly not good enough!

Bob: Okay, if you insist. For α = 1
2 we can determine the difference between

the two force evaluations as:

2.2. WHAT IS GOOD ENOUGH? 21

k1 − k2 = f(x0) − f(x0 + k1τ)
= −f ′

0k1τ + O(τ2) = −f ′
0f0τ + O(τ2) (2.6)

This translates into a difference between the two recycle points of:

x̃1 − x1 = {x0 + k1τ} −
{
x0 + 1

2 (k1 + k2) τ
}

= 1
2 (k1 − k2) τ

= − 1
2f ′

0f0τ
2 + O(τ3) (2.7)

Alice: That strenghtens your argument quite a bit, I’d say. Still, I sometimes
like to play the mathematician. While your result is a good one, it is not yet
fully clear that it is the optimal one.

Bob: It’s clear to me. What else could be better?

Alice: I think I agree, but for future reference, I would like to give a formal
derivation. Soon we will get to much more complicated situations, where we
can’t use intuition anymore, and I would like to see exactly how I can prove that
this is the best choice. So bear with me, while I try to minimize the difference
between x̃1 and x1 directly, starting from the most general form:

x̃1 − x1 =
{

x0 +
1
2α

k1τ

}
− {x0 + ((1 − α)k1 + αk2) τ}

=
1
2α

k1τ + (α − 1)k1τ − αk2τ

=
(

α − 1 +
1
2α

)
k1τ − αk2τ (2.8)

As before, we can write k1 = f0 and use the expansion

k2 = f(x0 +
1
2α

k1τ) = f0 +
1
2α

f0f
′
0τ + O(τ2) (2.9)

which gives for Eq. (2.8):

x̃1 − x1 =
(

α − 1 +
1
2α

)
f0τ − α

(
f0 +

1
2α

f0f
′
0τ

)
τ + O(τ3)

=
(

1
2α

− 1
)

f0τ − 1
2f0f

′
0τ

2 + O(τ3) (2.10)

In order to let the first order term vanish, we regain our previous results: α = 1
2

is the best approximation, and the remaining term is second order in τ .

22 CHAPTER 2. RECYCLING FORCE EVALUATIONS

Bob: I told you so! And for good measure, let me give you another physical
intuition derivation. At the beginning of the second step, we can only recycle a
previous force if that force was performed at the end of the previous step. In first
approximation, given the force f0 at x0 , we can write x1 = x0 + f0τ + O(τ2).
Comparing this with Eq. (2.1), we see immediately that 1/(2α) = 1 , hence
α = 1

2 .

Alice: Yes, I fully agree that it is helpful to look at the results from several
angles, to get more of a fingertip feeling of what it all means. Still, I wouldn’t
have been fully happy without a formal derivation. But let’s move on.

2.3 Approximate Recycling

Bob: The question is, can we use our buest guess, or in your case, best deriva-
tion, for recycling?

Alice: At first sight, the second-order offset in Eqs. (2.7) and (2.10) may seem
problematic, since we are aiming at developing a second order algorithm, with
third-order errors. However, when we recycle the last force calculation in the
next step we will always use it in multiplication with an extra power of τ . This
means that the slight offset will cause only third order errors, on the same level
of the truncation errors we are making anyway.

To show this explicitly, let us extend our notation, using ki,j to denote kj for the
step starting at xi , and let us use tildes to indicate the approximate solution
that we obtain when we recycle the previous force evaluation. Here are the
expressions for the first step:

x1 = x0 + 1
2 (k0,1 + k0,2) τ

k0,1 = f(x0)
k0,2 = f(x0 + k0,1τ)

(2.11)

Here is the correct second step without recycling:

x2 = x1 + 1
2 (k1,1 + k1,2) τ

k1,1 = f(x1)
k1,2 = f(x1 + k1,1τ)

(2.12)

And here is the approximate second step when we use recycling:

x̃2 = x1 + 1
2

(
k̃1,1 + k̃1,2

)
τ

k̃1,1 = k0,2

k̃1,2 = f(x1 + k̃1,1τ)

(2.13)

More generally, we can express step number i without recycling as:

2.3. APPROXIMATE RECYCLING 23

xi+1 = xi + 1
2 (ki,1 + ki,2) τ

ki,1 = f(xi)
ki,2 = f(xi + ki,1τ)

(2.14)

and with recycling as:

{
x̃i+1 = xi + 1

2

(
k̃i−1,2 + k̃i,2

)
τ

k̃i,2 = f(xi + k̃i−1,2τ)
(2.15)

At each step, the difference between x̃i+1 and xi+1 is of third order in τ , as we
can illustrate by evaluating down the differences in position at the end of the
second step:

x̃2 − x2 = 1
2

(
k̃1,1 − k1,1

)
τ +

(
k̃1,2 − k1,2)

)
τ (2.16)

Using Eq. (2.10), we can expand the first term on the right hand side as follows

k̃1,1 − k1,1 = f(x̃1) − f(x1) = (x̃1 − x1)f ′(x1) + O(τ3)
= − 1

2f0f
′
0f

′(x0 + 1
2 (k0,1 + k0,2)τ)τ2 + O(τ3)

= − 1
2f0(f ′

0)
2τ2 + O(τ3) (2.17)

This result can in turn be used to expand the second term on the right-hand
side of Eq.(2.16):

k̃1,2 − k1,2 = f(x1 + k̃1,1τ) − f(x1 + k1,1τ)

=
(
k̃1,1 − k1,1

)
f ′(x1)τ + O(τ4)

= − 1
2f0(f ′

0)
2f ′(x0 + 1

2 (k0,1 + k0,2)τ)τ3 + O(τ4)

= − 1
2f0(f ′

0)
3τ3 + O(τ4) (2.18)

This means that in Eq. (2.16) the first term on the right-hand side dominates,
and we find:

x̃2 − x2 = − 1
2f0(f ′

0)
2τ3 + O(τ4) (2.19)

This is the promised result: recycling the force calculation at the end of one
step introduces an extra error in the next step which is third order in τ . Since
our basic algorithm is only second-order accurate in τ per step, the only effect
is to change the magnitude of the leading error term, without affecting the
second-order nature of the algorithm.

24 CHAPTER 2. RECYCLING FORCE EVALUATIONS

2.4 Summary

Bob: Great! So there is a place for recycling, after all. And the scheme we have
found, for α = 1/2 is just one of the classic second-order Runge-Kutta schemes,
the one we already wrote down in Eq. (1.37). I had no idea that that algorithm
could be used in a recycling fashion.

Alice: I didn’t either. Normally, it is presented in the text books as a scheme
where you simply have to evaluate the force two times in every step.

Bob: Most likely, the accuracy will be less per time step. However, if force
evaluation is the most expensive part of the calculation, as it certainly is for the
N-body problem, switching to recycling allows us to take a step size that is two
times smaller, for the same number of force calculations.

Alice: That probably means that it depends on the particular application
whether recycling is a good idea or not. Making the step size two times smaller
means that the error per step will become eight times smaller, and the error
for a fixed time interval four times smaller, at least approximately. If the extra
error introduced by recycling makes the calculation error more than four times
larger, it is not a good idea.

Bob: At least we have an extra tool in our toolbox. I like gathering extra
algorithms! It would be fun to see under which circumstances we get a better
result.

Alice: But not right now. I prefer to continue first our systematic investigation
with paper and pencil, before we start coding things up again.

Bob: Fine.

Alice: Let us summarize what we have learned so far.

• If we use only one force calculation per step, without recycling any force
evaluation results, we have to settle for a first-order scheme, the forward-
Euler algorithm, Eq. (1.20).

• If we use two force calculations per step, without recycling any force eval-
uation results, we find a one-parameter family of second-order scheme, the
classical second-order Runge-Kutta algorithms, given in Eq. (1.36).

• If we use only one new force calculation per step, but in addition we recycle
the last force calculation from the previous step, we have the best of both
worlds: we obtain a second-order scheme for the same price in terms of
number of force evaluations as the first-order scheme. This clever scheme
is given in Eq. (2.15), as the recycled version of what otherwise be Eq.
(2.14), which is the same as Eq. (1.36) for α = 1

2 , also given above as Eq.
(1.37).

2.5. TWO FORCE EVALUATIONS PER STEP 25

2.5 Two Force Evaluations per Step

Bob: You would think that we can now add a third force calculation per step,
while recycling the last one. This would mean to new force calculations and
one recycled one per step. And just as we found a second-order scheme when
using one old and one new force, I seems pretty clear that we can now find a
third-order scheme, using one old and two new forces.

Alice: I agree that that seems likely, but there is no guarantee. Remember that
you can obtain a fourth-order scheme with four forces, but that a fifth-order
scheme requires six forces. These combinatoric questions cannot be derived by
analogy; I’m afraid we just will have to do the hard work of deriving them.

Our first task is to write the form of a general Runge-Kutta scheme with three
force calculations per time step. Once we have this form, we can insist on the
extra condition that the position of the final force calculation coincides with the
position at the beginning of the next time step, at least to within second order
in τ .

The general three-stage Runge-Kutta scheme looks like this:

k1 = f(x0)
k2 = f(x0 + η21k1τ)
k3 = f(x0 + η31k1τ + η32k2τ)

x1 = x0 + (α1k1 + α2k2 + α3k3) τ (2.20)

Our analysis proceeds as before, but with more complex terms. Instead of Eq.
(1.24), we now have

x1 = x0 + {α1f0 + α2f(x0 + η21f0τ)+
α3f(x0 + η31f0τ + η32f(x0 + η21f0τ)τ)} τ (2.21)

Instead of Eq. (1.26) we have

k2 = f(x0 + η21f0τ) =
f0 + η21f0f

′
0τ + 1

2η2
21f

2
0 f ′′

0 τ2 + O(τ3) (2.22)

The expression for the next force evaluation can be derived similarly:

k3 = f0 + (η31k1 + η32k2) f ′
0τ +

26 CHAPTER 2. RECYCLING FORCE EVALUATIONS

1
2 (η31k1 + η32k2)

2
f ′′
0 τ2 + O(τ3)

= f0 + (η31 + η32) f0f
′
0τ + η32η21f0 (f ′

0)
2
τ2 +

1
2 (η31 + η32)

2
f2
0 f ′′

0 τ2 + O(τ3) (2.23)

We thus find for the new position, at the end of our time step, as the general-
ization of Eq. (1.27)

x1 = x0 + (α1 + α2 + α3)f0τ +
α2η21f0f

′
0τ

2 + 1
2α2η

2
21f

2
0 f ′′

0 τ3 +

α3 (η31 + η32) f0f
′
0τ

2 + α3η32η21f0 (f ′
0)

2
τ3 +

1
2α3 (η31 + η32)

2
f2
0 f ′′

0 τ3 + O(τ4)
= x0 + (α1 + α2 + α3)f0τ +

(α2η21 + α3 (η31 + η32)) f0f
′
0τ

2 +
1
2

(
α2η

2
21 + α3 (η31 + η32)

2
)

f2
0 f ′′

0 τ3 +

α3η32η21f0 (f ′
0)

2
τ3 + O(τ4) (2.24)

As we did in Eqs. (1.28) and (1.29), we have to equate this expression term for
term with the corresponding expressions in the Taylor series expansion

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + O(τ4) (2.25)

Using Eqs. (1.12), we can now write this as

x1 = x0 + f0τ + 1
2f0f

′
0τ

2 + 1
6

{
f2
0 f ′′

0 + f0(f ′
0)

2
}

τ3 + O(τ4) (2.26)

Equating the coefficients for the various terms in Eqs. (2.24) and (2.26), we find
for the first order in τ the relation

α1 + α2 + α3 = 1 (2.27)

For the second order terms in τ we find

α2η21 + α3 (η31 + η32) = 1
2 (2.28)

For the third order terms in τ involving the second derivative of the force, we
find

α2η
2
21 + α3 (η31 + η32)

2 = 1
3 (2.29)

2.6. TWO EXAMPLES 27

while for the third order terms in τ involving the square of the first derivative
of the force, we find

α3η32η21 = 1
6 (2.30)

2.6 Two Examples

Bob: This is all nice and fine, but I’d like to see some concrete examples. Since
we have four equations for six unknown variables, we expect to have a two-
parameter freedom of choice. Let’s use that freedom, and write down a few
examples, to get a feeling for the type of algorithms we have at our hands.

Alice: A natural choice would be to require that the second force evaluation
takes place in the middle of the time step (η21 = 1

2) , while the third force
evaluation takes place at the end of the step (η31 + η32 = 1). With these
two extra conditions, barring unforeseen complications, we can expect to find a
unique solution.

Let’s check that. By substituting our two conditions into the four boxed equa-
tions we found above, we get:

α1 + α2 + α3 = 1

1
2α2 + α3 = 1

2

1
4α2 + α3 = 1

3

α3η32 = 1
3

(2.31)

The second and third equations above can be solved readily to find α2 = 2/3
and α3 = 1/6 , after which the first equation yields α1 = 1/6. The last equation
then gives η32 = 2 which implies η31 = −1. We thus arrive at the following
third-order scheme:

x1 = x0 + 1
6 (k1 + 4k2 + k3) τ

k1 = f(x0)
k2 = f(x0 + 1

2k1τ)
k3 = f(x0 − k1τ + 2k2τ)

(2.32)

Bob: Good! This is indeed one of the classical third-order Runge-Kutta algo-
rithms.

Alice: Another natural choice is to spread the force calculations evenly over
the interval, at times 0 , τ/3 , and 2τ/3 , before starting the calculations for
the new step at time τ .

28 CHAPTER 2. RECYCLING FORCE EVALUATIONS

Bob: Such a scheme obviously cannot be used for our current purposes. You
need the third force calculation at the very end of the step, otherwise there is
nothing to recycle.

Alice: That is true, but you asked for example algorithms, and I expect this
to lead to another well-known scheme, so let us derive it here on the side. If
nothing else, it can function as a check on our calculations. We require that
η21 = 1

3 and η31 +η32 = 2
3 . Plugging this into the four conditions we have found

before leads to:

α1 + α2 + α3 = 1

1
3α2 + 2

3α3 = 1
2

1
9α2 + 4

9α3 = 1
3

α3η32 = 1
2

(2.33)

The second and third equations imply α2 = 0 and α3 = 3/4 , and whith the
first equation we find α1 = 1/4. The last equation yields η32 = 2/3 which then
determines η31 = 0. We thus arrive at:

x1 = x0 + 1
4 (k1 + 3k3) τ

k1 = f(x0)
k2 = f(x0 + 1

3k1τ)
k3 = f(x0 + 2

3k2τ)

(2.34)

Bob: Right you are: an alternative classical third-order Runge-Kutta scheme.
I agree, it is good to know that we can reproduce this.

2.7 Recycle Conditions

Alice: It is time to return to our original objective, to find a third-order scheme
that uses three force calculations per time step, two of which are computed anew,
while the third one is being recycled from its use in the previous step. With
two free parameters, we seem to have a good chance to find such a scheme.

As in Eqs. (2.8) and (2.10), we have to calculate the difference between the
position x̃1 at which the last force calculation of the previous step took place
and the actual position x1 at the end of that step. In Eq. (2.10) we only needed
to let the term linear in τ vanish, in order to obtain a consistent second-order
scheme. In the present case, for a third-order scheme, we need to let both the
linear and quadratic terms in τ vanish. Using Eq. (2.22), we have:

2.7. RECYCLE CONDITIONS 29

x̃1 = x0 + η31k1τ + η32k2τ

= x0 + (η31 + η32) f0τ +
η32η21f0f

′
0τ

2 + O(τ3) (2.35)

Comparing this with Eq. (2.24), we have to the same order in τ :

x1 = x0 + (α1 + α2 + α3)f0τ +
(α2η21 + α3 (η31 + η32)) f0f

′
0τ

2 + O(τ3) (2.36)

Requiring the coefficients of τ and τ2 to match in the last two equations gives
us two extra conditions:

α1 + α2 + α3 = η31 + η32 (2.37)

and

α2η21 + α3 (η31 + η32) = η32η21 (2.38)

Bob: You see, I guessed right! The six boxed equations here will allow us to
determine the six variables {α1, α2, α3, η21, η31, η32}.
Alice: Not so fast. Don’t count your chickens before they are hatched!

Bob: I haven’t heard that expression in a long time. Well, hatching shouldn’t
be too difficult.

Alice: Gathering all six equations, we get:

α1 + α2 + α3 = 1

α2η21 + α3 = 1
2

α2η
2
21 + α3 = 1

3

α3 = 1
3

η31 + η32 = 1

η32η21 = 1
2

(2.39)

where we have already simplified the expressions somewhat by substituting, for
example, one earlier relation α1 + α2 + α3 = 1 and another one in simplified
form as α2η21 + α3 = 1

2 into the last two boxed equations.

30 CHAPTER 2. RECYCLING FORCE EVALUATIONS

Bob: So far, so good.

Alice: Or so it seems. Look, when we substitute the fourth relation into the
second and third one, we obtain:

α2η21 = 1
6

α2η
2
21 = 0 (2.40)

There is no way that we can satisfy these two equations simultaneously!

The last line implies that either α2 = 0 or η21 = 0. Either case would imply
α2η21 = 0 , in contradiction with the requirement that α2η21 = 1/6.

Bob: I guess hatching was unsuccessful. That’s a disappointment!

Alice: We have to conclude, somewhat surprisingly, that there just is no third-
order recycling scheme. Whether we use two new force calculations per time
step, or whether we recycle an additional force calculation from the previous
time step, in both cases we wind up with a second-order algorithm.

Bob: That’s a pity.

2.8 Remaining Freedom

Alice: However, not all is lost: our scheme is still second-order, and has more
freedom than our non-recycling scheme. Specifically, let us gather the set of con-
ditions necessary to guarantee at least second-order behavior for our recycling
method. These are, from Eqs. ((2.27), ((2.28), and ((2.37):

α1 + α2 + α3 = 1

α2η21 + α3 (η31 + η32) = 1
2

α1 + α2 + α3 = η31 + η32

(2.41)

which simplifies to

α1 + α2 + α3 = η31 + η32 = 1

α2η21 + α3 = 1
2

(2.42)

These are three equations for six unknown variables. If we introduce α ≡ α2 ,
η ≡ η21 , and ζ ≡ η32 , we get the following parametrized solutions:

2.9. SUMMARY 31

α1 = 1
2 − α + αη

α2 = α

α3 = 1
2 − αη

η21 = η

η31 = 1 − ζ

η32 = ζ

(2.43)

This gives:

x1 = x0 + 1
2

(
(1 − 2α + 2αη)k1 + 2αk2 + (1 − 2αη)k3

)
τ

k1 = f(x0)
k2 = f(x0 + ηk1τ)
k3 = f(x0 + (1 − ζ)k1τ + ζk2τ)

(2.44)

2.9 Summary

Bob: I’m not sure whether we’ve gained anything, by getting extra free param-
eters. I had hoped for a third-order scheme.

Alice: We haven’t gained anything, but neither have we lost anything. Later,
when we will apply these various algorithms, we can check to see whether any
of the new parameters allow choices that give us more accurate results.

We can compare Eq. (2.44) with the non-recycling schemes, where we also
perform two force calculations per step, and for which we obtained a second-
order scheme as well. We found there, as Eq.(1.36):

x1 = x0 + ((1 − α)k1 + αk2) τ

k1 = f(x0)
k2 = f(x0 + 1

2αk1τ)

(2.45)

Bob: Ah yes, that is interesting. Let us see whether we can obtain Eq. (2.45)
from Eq. (2.44). In that case, we’d better not use the third force calculation k3

in the calculation of the new position. This means:

(1 − 2αη) = 0 (2.46)

32 CHAPTER 2. RECYCLING FORCE EVALUATIONS

or

2αη = 1 (2.47)

Plugging this back into the first line of Eq. (2.44), we get for the new position:

x1 = x0 + ((1 − α)k1 + αk2) τ (2.48)

just as in Eq. (2.45. Since η = 1/(2α) , the expression for the second force
becomes:

k2 = f(x0 +
1
2α

k1τ) (2.49)

We conclude that, for the choice η = 1/(2α) , Eq. (2.44) becomes Eq. (2.45).
It all hangs together! The third force calculation in Eq. (2.44) effectively drops
out, for this choice of parameters.

Alice: It is also instructive to compare this scheme with the second-order
scheme we found based on one new force calculation and one recycled force
calculation:

x1 = x0 + 1
2 (k1 + k2) τ

k1 = f(x0)
k2 = f(x0 + k1τ)

(2.50)

Bob: which in fact is exactly the previous set, Eq. (2.45), with the further
restriction that α = 1

2 .

Alice: Let us sum up. We conclude that we have found three different ways of
constructing a second-order Runge-Kutta method:

1. Without recycling, we have Eq.(2.45), with two new force calculations per
time step, and one free parameter;

2. With recycling, we have Eq.(2.50), with one new force calculation per time
step, and no free parameters;

3. With recycling, we have Eq.(2.44), with two new force calculations per
time step, and three free parameters.

Bob: Well done! Now it’s time to leave this first-order differential equation
behind us. I think we’ve learned enough, and I would prefer to go to the more
realistic case of a second-order differential equation.

Chapter 3

Second-Order Differential
Equations

3.1 Formulating the Problem

Alice: Now that we know how to solve a first-order differential equation, we
can extend our methods immediately to treat the case of a general second-order
differential equation

d 2x

dt2
= f

(
x,

dx

dt

)
(3.1)

Here the force per unit mass f(x) exerted on a particle depends explicitly on
both the position and the velocity of that particle. An example of such a
force is the motion of a mass point under the influence of friction. Indeed, our
physical interpretation of the case of a first-order differential equation followed
from the above form in the limit of infinitely strong friction, where the velocity-
dependent term dominated completely. Another example would be the force
that is felt by an electron moving in an electromagnetic field (where x would
have be interpreted as a three-dimensional vector, a point we will come back to
later in this chapter).

Bob: Wouldn’t it be simpler to restrict ourselves immediately to the type of
equations we are dealing with in stellar dynamics, without any velocity depen-
dence in the forces?

Alice: I would prefer to hold off just a bit, because the simplest way to treat
second-order equations is by following the same recipe as we did before. In that
case, velocity dependence does not pose any problems.

The second-order equation above can be rewritten as a system of two first-order

33

34 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

differential equations:

ẋ = v

v̇ = f(x, v)
(3.2)

In principle we can look at this as a single first-order differential equation for a
two-component vector.

Bob: Ah, that is a nice short-cut. Let’s do that, and then we should be able to
use all the results from the previous chapters immediately!

3.2 Vector Notation

Alice: We’ll think have to put in some thought, since not all scalar equations
generalize in an obvious way to the vectorial case, but I agree that it would
probably be a good guide line.

Okay, to introduce vector notation, let us define:

~s ≡
(

x

v

)
(3.3)

and

~g ≡
(

v

f(x, v)

)
(3.4)

We can then write our second-order differential equation as a single first-order
equation in terms of vectors:

d

dt
~s = ~g (3.5)

or simply:

~̇s = ~g (3.6)

When written out, this leads to the two equations implicit in:

(
ẋ

v̇

)
=

(
v

f(x, v)

)
(3.7)

Bob: In our case of interest, classical mechanics, we will drop the velocity
dependence, and study instead the simpler equation:

3.3. ONE FORCE EVALUATION PER STEP 35

d 2x

dt2
= f(x) (3.8)

or, equivalently

(
ẋ

v̇

)
=

(
v

f(x)

)
(3.9)

Alice: As we will see in the next chapter, we can exploit the simple form of
these two equations to get an extra order of accuracy, seemingly for free, using
what is called a partitioned Runge-Kutta algorithm. However, in order to put
that clever trick in a clear context, in the current section we will be less clever.
Rather, we will simply apply the same treatment that we have developed in the
previous chapters.

Bob: Fine, but let’s not linger too long! And please, let us drop the velocity
dependence in the forces. Life is complicated enough as it is.

3.3 One Force Evaluation per Step

Alice: Okay, okay, we’ll work with f(x) then. Now, everything we have done
so far carries over directly to the case of two coupled differential equations. To
show this, let us repeat the same derivation, but now in vector form. At the
start of a time step, we evaluate the right-hand side of the differential equation
at t = 0:

~k1 = ~g0 =
(

v0

f0

)
(3.10)

This leads to the following dimensionally correct expression:

~s1 = ~s0 + α1
~k1τ (3.11)

Combining the last two equations, we have

~s1 = ~s0 + α1~g0τ (3.12)

We can compare this expression with the Taylor series:

~s1 = ~s0 + ~̇s0τ + 1
2 ~̈s0τ

2 + O(τ3) (3.13)

where we use the shorthand notations

36 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

~̇s0 =
(

v0

a0

)
(3.14)

and

~̈s0 =
(

a0

j0

)
(3.15)

to avoid introducing yet another set of new symbols for the various derivatives
of ~s at time 0.

In order to compute

~̈s0 =
d

dt
~g0 (3.16)

we will need to determine the time derivative of ~g.

3.4 Not So Fast

Bob: presumably that is simply

d

dt
~g0 = ~g0~g

′
0 (3.17)

in analogy to what we did in the first chapter, where we used d
dtf(x0) = f0f

′
0.

Alice: Not so fast! You have not specified what you mean with that notation.
The left-hand side is a vector, while the right-hand side suggests the product of
two vectors. What does it mean?

Bob: Hmm. I hadn’t thought about that. Good question.

Alice: If it would be an inner product, the left hand side should be a scalar. If,
however, it is a tensor product, the left hand side should be a tensor. In neither
case does it produce a vector.

Bob: Again, good point. Wel, in case of doubt, write it out! What does it look
like in components?

Alice: Let us check. The most intuitive approach would be to start with a
small variation in ~g , which can be expressed as

d~g = d

(
v

f(x)

)
=

(
dv

f ′(x)dx

)
(3.18)

This implies:

3.5. FORWARD EULER IN VECTOR FORM 37

d

dt
~g =

(
f

vf ′

)
(3.19)

Bob: Good! So we do get a vector, after all.

Alice: Yes. And even if you would have allowed me to retain a velocity depen-
dence in the force, we would still have wound up with a vector, but in this case
we would have:

d~g = d

(
v

f(x)

)
=

(
dv

fx(x)dx + fv(x)dv

)
(3.20)

where now fx = f ′ = ∂f/∂x and fv = ∂f/∂v. This would give us

d

dt
~g =

(
f

vfx + ffv

)
(3.21)

Bob: Nice to know, but no thanks, let’s stick with position-dependent forces
only.

Alice: If you insist. At least the notation above will point the way for further
generalizations, whenever we want to go that route.

Bob: Thanks!

3.5 Forward Euler in Vector Form

Alice: Let us introduce the symbol ~h0 for the right-hand side of Eq. (3.19), at
time 0:

~h0 ≡
(

f0

v0f ′
0

)
(3.22)

We can then write Eq. (3.13) as

~s1 = ~s0 + ~g0τ + 1
2
~h0τ

2 + O(τ3) (3.23)

We demand that Eqs. (3.12) and Eq. (3.23) should be equal. The constant
term ~s0 matches trivially, and the first condition arises from the term linear in
τ :

α1~g0 = ~g0 (3.24)

hence

38 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

α1 = 1 (3.25)

We have no free parameter left, so this leads us to the only possible explicit
first-order integration scheme

~s1 = ~s0 + ~k1τ

~k1 = ~g(~s0)
(3.26)

which is the forward-Euler algorithm, now in vector form. If we write this out
in components, we get:

(
x1

v1

)
=

(
x0 + α1v0τ

v0 + α1f0τ

)
(3.27)

Let us define

~k1 ≡
(

v0

k1

)
(3.28)

where we will use the same symbol k for the vector and the last componenent,
again to avoid introducing yet more new letters. With this notation, we can
write Eq. (3.24) in a more traditional form as:

x1 = x0 + v0τ
v1 = v0 + k1τ

k1 = f(x0)

(3.29)

We thus recover the forward-Euler algorithm. As before, this scheme is only
first-order accurate, since it cannot possibly reproduce the O(τ2) term in Eq.
(3.23).

Bob: Quite a bit of work to regain Forward Euler!

3.6 Two Force Evaluations per Step

Alice: Yes, and we might have guessed the result, but when we move on to
using two force evaluations per step, things will undoubtedly get messier.

As before, after a first evaluation of the right-hand side of the differential equa-
tion, we can perform a preliminary integration in time, after which we can
evaluate the right-hand side again, at a new position:

3.6. TWO FORCE EVALUATIONS PER STEP 39

~k1 = ~g(~s0) (3.30)
~k2 = ~g(~s0 + η~k1τ) (3.31)

We can now use a more general expression for the new position, in which we
rely on the preliminary information that has been gathered in the two force
evoluations. Since each force evaluation has the dimension of a time derivative
of the position, we have to multiply each one with a single power of τ . The
coefficient for each term is, as yet, arbitrary, so let us parametrize them as
follows:

~s1 = ~s0 +
(
α1

~k1 + α2
~k2

)
τ (3.32)

We can combine these equations, and write them as

~s1 = ~s0 + {α1~g0 + α2~g(~s0 + η~g0τ)} τ (3.33)

We want to determine

~k2 = ~g(~s0 + d~s) (3.34)

where

d~s = η~g0τ (3.35)

We have already seen that

d~g = d

(
v

f(x)

)
=

(
dv

f ′(x)dx

)
(3.36)

and we can also write

d~s =
(

dx

dv

)
= η

(
v0

f0

)
τ (3.37)

The two results that are encoded here, dx = ηv0τ and dv = ηf0τ , can now be
plugged back into the definition of d~g

d~g =
(

dv

f ′(x)dx

)
= η

(
f0

v0f ′
0

)
τ (3.38)

We finally get

40 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

~k2 = ~g(~s0 + d~s) = ~g(~s0) + d~g = ~k1 + η~h0τ (3.39)

where we use again the notation

~h0 ≡
(

f0

v0f ′
0

)
(3.40)

Bob: A useful function, obviously.

3.7 Putting Everything Together

Alice: To sum up: developing ~k2 in a Taylor series around τ = 0 gives:

~k2 = ~g(~s0 + η~g0τ) = ~g0 + η~h0τ + O(τ2) (3.41)

Using this result in Eq. (3.33), we find for the new position, at the end of our
time step:

~s1 = ~s0 + (α1 + α2)~g0τ + α2η~h0τ
2 + O(τ3) (3.42)

We can now compare this expression with the Taylor series expansion of the
true orbit, as we did in the previous section:

~s1 = ~s0 + ~̇s0τ + 1
2 ~̈s0τ

2 + O(τ3) (3.43)

We can write this, as we saw in Eq. (3.23), in terms of ~h0 as follows:

~s1 = ~s0 + ~g0τ + 1
2
~h0τ

2 + O(τ3) (3.44)

Starting with terms to first order in τ in Eqs. (3.42) and (3.44), we have to
insist that

(α1 + α2)~g0 = ~g0 (3.45)

which leads to the condition

α1 + α2 = 1 (3.46)

To second order in τ , we would like to satisfy:

α2η~h0 = 1
2
~h0 (3.47)

3.8. SUMMARY 41

which can be done through the condition

η =
1

2α2
(3.48)

We conclude that when we allow two force evaluations, we again are left with
one free parameter α.

Bob: So, now we’re done, and we can move on!

3.8 Summary

Alice: Yes, but let us put all our results on the table first.

To summarize, we can write:

~s1 = ~s0 +
(
(1 − α)~k1 + α~k2

)
τ

~k1 = ~g(~s0)
~k2 = ~g(~s0 + 1

2α
~k1τ)

(3.49)

Notice that this is exactly the vector generalization of the expressions we found
in the case of a first-order differential equation:

x1 = x0 + ((1 − α)k1 + αk2) τ

k1 = f(x0)
k2 = f(x0 + 1

2αk1τ)

(3.50)

Bob: I’d like to see our vector expressions written out in components. That
way it will be easier to make contact with the previous chapters.

Alice: My pleasure! Starting with

~k1 = ~g(~s0) = ~g

((
x0

v0

))
=

(
v0

f0

)
(3.51)

we find

~k2 = ~g

((
x0

v0

)
+

1
2α

(
v0

f0

)
τ

)
(3.52)

= ~g

((
x0 + 1

2αv0τ

v0 + 1
2αf0τ

))
=

(
v0 + 1

2αf0τ

f(x0 + 1
2αv0τ)

)
(3.53)

42 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

which leads to the expression for ~s1:

(
x1

v1

)
=

(
x0

v0

)
+

(
(1 − α)v0τ + α(v0 + 1

2αf0τ)τ
(1 − α)f0τ + αf(v0 + 1

2αf0τ)τ

)
(3.54)

=
(

x0 + v0τ + 1
2f0τ

2

v0 + (1 − α)f0τ + αf(x0 + 1
2αv0τ)τ

)
(3.55)

We can write this in components as

x1 = x0 + v0τ + 1
2f0τ

2

v1 = v0 + ((1 − α)k1 + αk2)τ

k1 = f(x0)
k2 = f(x0 + 1

2αv0τ)

(3.56)

3.9 Two Examples

Bob: I find this a lot more understandable that the vector notation. And for
practical application, let’s look at a couple special case. For α = 1 we find

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + k2τ

k1 = f(x0)
k2 = f(x0 + 1

2v0τ)

(3.57)

and for α = 1
2 we find

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + 1
2 (k1 + k2)τ

k1 = f(x0)
k2 = f(x0 + v0τ)

(3.58)

Alice: Ah, that is interesting! This is almost our leapfrog scheme.

Bob: How so?

Alice: The expression for x1 is exactly the same as what we have used when
we implemented the leapfrog.

Bob: And so is the expression for v1. The whole idea of leapfrogging is to
advance the velocity with an acceleration that is the exact average of the force
calculation at the beginning and at the end of the step.

3.9. TWO EXAMPLES 43

Alice: Ah, the word exact is important here! While it is true that k1 is the
force evaluation at the beginning of the step, the exact force calculation at the
end of the step would be f(x1) = x0 + v0τ + 1

2k1τ
2. However, in our scheme

above, k2 = x0 + v0τ , and the last term is missing.

Bob: Tricky! So we are dealing with an almost-leapfrog scheme, where the last
force calculation is based on a predicted value for the new position, instead of
the corrected value.

Alice: Yes, that’s a good way of putting it. And all this can serve as an in-
vitation to go beyond the straightforward generalizations of the Runge-Kutta
schemes for first-order differential equations. It is time to look at more imagi-
native schemes, that treat position and velocity in different ways!

44 CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS

Chapter 4

Partitioned Runge-Kutta
Algorithms

Bob: You promised a better approach to solving second-order differential equa-
tions, using Runge-Kutta schemes. What did you call such an algorithm again?

Alice: It is called a partitioned Runge-Kutta algorithm. The idea is to combine
the force calculations in different ways for the position and for the velocity.
The word ‘partitioned’ here means that separate the treatment of x from the
treatment of v. We already saw an example at the end of our previous discussion,
where we had found a scheme that was almost, but not quite, a leapfrog scheme.
If we would have tinkered with that scheme, we could have turned it into a
leapfrog, but it would then no longer be a vector generalization of a Runge-
Kutta scheme.

Bob: So you’re saying that we have a lot more freedom, when we allow separate
ways to update position and velocity, after first calculation a number of force
evaluations.

Alice: Exactly. And we have already done this, for our fourth-order integrator,
the one we plucked from Abramowitz and Stegun.

Bob: Does this mean that we can write our good old leapfrog as a partitioned
Runge-Kutta scheme? That would be interesting! I have always thought about
Runge-Kutta methods and the leapfrog scheme as two completely different ani-
mals, pardon the pun. Do you think that the leapfrog can be view as a type of
Runge-Kutta algorithm?

Alice: I’m not sure. One reason to do this systematic landscape exploration
is to find the answers to that type of question! And I’m sure we’ll find out
soon. By exploring all possible schemes with up to two new force calculations
per step, we’re bound to encounter the leapfrog, if indeed it is a citizen of the
Runge-Kutta world.

45

46 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

So let us return to our special second-order differential equation

d 2x

dt2
= f(x). (4.1)

Let us first gather some useful expressions, starting with the two first-order
equations

dx

dt
= v

dv

dt
= f(x)

(4.2)

As before, we expand the position and the velocity of the orbit in Taylor series:

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + 1
24s0τ

4 + 1
120c0τ

5 + 1
720p0τ

6 + O(τ7) (4.3)

v1 = v0 + a0τ + 1
2j0τ

2 + 1
6s0τ

3 + 1
24c0τ

4 + 1
120p0τ

5 + O(τ6) (4.4)

and when we differentiate the set of differential equations several times, we
obtain the following equations:

a0 = f(x(0)) = f(x0) = f0

j0 =
d

dt
a(t)

∣∣∣∣
t=0

=
d

dt
f(x(t))

∣∣∣∣
t=0

=
df(x)
dx

∣∣∣∣
x=x0

dx

dt

∣∣∣∣
t=0

= f ′
0v0

s0 = j̇0 = f ′′
0 v2

0 + f ′
0f0

c0 = ṡ0 = f ′′′
0 v3

0 + 3f ′′
0 f0v0 + (f ′

0)
2v0

p0 = ċ0 = f ′′′′
0 v4

0 + 6f ′′′
0 f0v

2
0 + f ′′

0

{
3f2

0 + 5f ′
0v

2
0

}
+ (f ′

0)
2f0 (4.5)

The last three lines can be derived in the same way as the second line, by
fully writing out the differentiations, using the chain rule. This derivation is
completely analogous to what we did for our first-order differential equation.

4.1 One Force Evaluation per Step

Bob: I guess we will forget about force recycling, at least for now.

4.1. ONE FORCE EVALUATION PER STEP 47

Alice: Yes. To keep things simple, let us look at a single integration step. But
we have another choice to make.

In the case of a first-order differential equation, at the start of our integration
we can only evaluate the right-hand side at time zero, at the beginning of the
integration time step. If we simply follow that example, we start with:

k1 = f(x0) (4.6)

This leads to the following dimensionally correct expressions:

x1 = x0 + α0v0τ + α1k1τ
2 (4.7)

v1 = v0 + β1k1τ (4.8)

We can write the expression for the position, substituting k1, as

x1 = x0 + α0v0τ + α1f0τ
2 (4.9)

We have to compare this with the Taylor series

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + O(τ4) (4.10)

Using Eqs. (XXXXX) we can write this as

x1 = x0 + v0τ + 1
2f0τ

2 + 1
6v0f

′
0τ

3 + O(τ4) (4.11)

Comparing Eqs. (4.9) and (4.11), we find:

α0 = 1 (4.12)

and

α1 = 1
2 (4.13)

We cannot satisfy the third order term in τ , so as far as the expression for the
position is concerned, we can make our scheme second-order accurate.

Looking now at the velocity, we have

v1 = v0 + β1f0τ (4.14)

We have to compare this with the Taylor series

48 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

v1 = v0 + a0τ + 1
2j0τ

2 + 1
6s0τ

3 + O(τ4) (4.15)

Using Eqs. (XXXXX) we can write this as

v1 = v0 + f0τ + 1
2v0f

′
0τ

2 + O(τ4) (4.16)

Comparing Eqs. (4.14) and (4.16), we find from the terms that are first order
in τ :

β1 = 1 (4.17)

Going to second order in τ would require that

j0 = f ′
0v0 = 0 (4.18)

which cannot be true for general f and v0. Even though we can construct a
second-order algorithm for the position, we can only find a first-order algorithm
for the velocity.

Bob: And I presume that there is no point in using a higher-order algorithm
for the position than for the velocity, since the overall order of the integration
scheme must be the lowest order of that of the components. Hmmm. Is that
so?

Alice: Yes, that is correct. For the very first step, it is possible in this case to
find a new position that is second-order accurate. But as soon as we take the
second step, we use the velocity that we arrived at in the first step, which is
only first-order accurate. The same is true for each subsequent step: we always
use the velocity value from the previous step.

Bob: But each time we multiply the velocity with τ . So even though the
velocity is first-order, the product of the velocity with τ must be second-order
correct, leading to an error term that is third-order in τ .

Alice: Yes, that is formally correct. However, \dots

We have to conclude that our approach only leads to a first-order correct algo-
rithm, which is of course the forward Euler algorithm:

x1 = x0 + v0τ
v1 = v0 + k1τ

k1 = f(x0)

(4.19)

%\subsubsubsection{A Delayed Force Evaluation}
{\bf 4.1.1.2. A Delayed Force Evaluation}

4.2. XXX 49

Given the special form of our second-order differential equation, it is not nec-
essary to start with a force evaluation at time zero. The first equation in the
set

dx

dt
= v

dv

dt
= f(x)

(4.20)

allows us to make a first-order prediction of the position, as:

x(t) = x0 + v0t + O(t2) (4.21)

which in turn allows us to postpone the first force evaluation to this non-zero
time:

v̇(t) = f(t) = f(x0 + v0t + O(t2)) = f(x0 + v0t) + O(t2). (4.22)

Note that this trick is not possible for a general force term that would depend
on velocity as well. In that case, the last equation would read

v̇(t) = f(x(t), v(t)) = f(x0 + v0t, v0 + a0t) = f(x0 + v0t, v0 + f0t) (4.23)

which would mean that we need an initial force evaluation f0 at time zero,
before we can perform a subsequent force evaluation at time t.

4.2 xxx

Let us exploit this extra freedom, for our special differential equation, by re-
peating our previous analysis for a delayed force evaluation. Our first force
evaluation can now take place at time t = η1τ where η1 is a free parameter.
Using the linear extrapolation of the position, as sketched above, we obtain:

k1 = f(x0 + η1v0τ) (4.24)

This leads to the following dimensionally correct expressions:

x1 = x0 + v0τ + α1k1τ
2 (4.25)

v1 = v0 + β1k1τ (4.26)

50 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

If we expand k1 to first order in τ , we obtain:

k1 = f0 + η1f
′
0v0τ (4.27)

Eq. (4.25) can thus be written as:

{
x1 = x0 + v0τ + α1f0τ

2 + α1η1f
′
0v0τ

3 + O(τ4)
v1 = v0 + β1f0τ + β1η1f

′
0v0τ

2 + O(τ3) (4.28)

Comparing this with

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + O(τ4) (4.29)

EXPAND

let us first consider the O(τ2) terms, which leads to the requirement:

a0 = f0 = 2α1f0 (4.30)

which leads to

α1 = 1
2 (4.31)

Similarly, we can use the Taylor series for v:

v1 = v0 + a0τ + 1
2j0τ

2 + 1
6s0τ

3 + O(τ4) (4.32)

EXPAND

Considering the O(τ) term, we have:

a0 = f0 = β1f0 (4.33)

which leads to

β1 = 1 (4.34)

Considering the O(τ2) terms, we have:

j0 = f ′
0v0 = 2β1η1f

′
0v0 (4.35)

This implies:

η1 = 1
2 (4.36)

4.2. XXX 51

In this way, all three free parameters are fixed, by requiring the algorithm to be
second-order in O(τ) in both position and velocity.

Could it be that we are in luck, and that this fixed solution can give us expres-
sions for x and v that are also third-order correct in O(τ) ? Let us start with
the position equation. This would require:

j0 = f ′
0v0 = 6α1η1f

′
0v0 (4.37)

Alas, since we are forced to use α1 = η1 = 1
2 , the coefficient on the right-hand

side is 3/2 while the one on the left-hand side is 1. We have no freedom left,
so this equation has no solutions for a general function f and a general initial
velocity v0.

%\subsubsubsection{Verlet-St\”ormer-Delambre Scheme}
{\bf 4.1.1.3. Verlet-St\”ormer-Delambre Scheme}
Using one evaluation of the right-hand side of the differential equation, we have
thus arrived at the following second-order integration scheme:

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + k1τ

k1 = f(x0 + 1
2v0τ)

(4.38)

Even though the equation for the velocity looks first-order, it is actually second-
order accurate, through the clever choice of time at which the right-hand side
of the differential equation is evaluated, namely in between the times at which
v0 and v1 are determined.

In fact, this scheme is nothing else than the good old leapfrog algorithm, also
known as the Verlet-St\”ormer-Delambre scheme, as we will show now.

Define

x1/2 ≡ x0 + 1
2v0τ (4.39)

and

v1/2 ≡ v0 + 1
2f1/2τ (4.40)

where

f1/2 ≡ f(x1/2) = f(x0 + 1
2v0τ) (4.41)

Our new scheme can then be written as

52 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

{
x1 = x0 + v1/2τ
v1 = v0 + f1/2τ

(4.42)

Alternatively, we can express the first of these equations in terms of

x3/2 = x1 + 1
2v1τ

=
(
x0 + v0τ + 1

2f1/2τ
2
)

+ 1
2

(
v0 + f1/2τ

)
τ

= x1/2 +
(
v0 + f1/2τ

)
τ

= x1/2 + v1τ (4.43)

We have thus derived at expressions that show the leapfrog nature of the algo-
rithm most clearly:

{
x3/2 = x1/2 + v1τ
v1 = v0 + f1/2τ

(4.44)

This representation shows clearly that the equations are fully time symmetric.
This fact was rather hidden in the original formulation, eqs. (4.38). However,
if we explicitly take a step forward and then another step backward, using
eqs. (4.38), we can recover the time symmetry inherent in these equations, as
follows. Let us denote the resulting position and velocity by {x−0, v−0} , which
are obtained from {x1, v1} by taking a time step with size −τ . Our task is to
show that {x−0, v−0} actually coincide with {x0, v0} , not only to second order,
as would be guaranteed in any second order scheme, but in fact to all orders in
τ .

x−0 = x1 − v1τ + 1
2f(x1 − 1

2v1τ)τ2

=
{
x0 + v0τ + 1

2f(x0 + 1
2v0τ)τ2

}
−

{
v0 + f(x0 + 1

2v0τ)τ
}

τ +
1
2f({x0 + v0τ + 1

2f(x0 + 1
2v0τ)τ2} − 1

2{v0 + f(x0 + 1
2v0τ)τ}τ)τ2

= x0 − 1
2f(x0 + 1

2v0τ)τ2 +
1
2f(x0 + v0τ + 1

2f(x0 + 1
2v0τ)τ2 − 1

2v0τ − 1
2f(x0 + 1

2v0τ)τ2)τ2

= x0 − 1
2f(x0 + 1

2v0τ)τ2 +
1
2f(x0 + 1

2v0τ)τ2

= x0 (4.45)

v−0 = v1 − f(x1 − 1
2v1τ)τ

=
{
v0 + f(x0 + 1

2v0τ)τ
}

4.2. XXX 53

−f({x0 + v0τ + 1
2f(x0 + 1

2v0τ)τ2} − 1
2{v0 + f(x0 + 1

2v0τ)τ}τ
= v0 (4.46)

Finally, we can also write

x3/2 = x1/2 + v1τ

= x1/2 + v0τ + f1/2τ
2

= x1/2 + v1/2τ + 1
2f1/2τ

2 (4.47)

and

v3/2 = v1 + 1
2f3/2τ

= v0 + f1/2τ + 1
2f3/2τ

= v1/2 + 1
2

(
f1/2 + f3/2

)
τ (4.48)

We thus find

{
x3/2 = x1/2 + v1/2τ + 1

2f1/2τ
2

v3/2 = v1/2 + 1
2

(
f1/2 + f3/2

)
τ

(4.49)

We can now shift our zero point in time by half a time step, to arrive at the
more convenient notation:

{
x1 = x0 + v0τ + 1

2f0τ
2

v1 = v0 + 1
2 (f0 + f1)τ

(4.50)

Comparing this with our starting point, eqs. (4.38):

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + k1τ

k1 = f(x0 + 1
2v0τ)

(4.51)

we have arrived at the alternative formulation:

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + (k1 + k2)τ

k1 = f(x0)
k2 = f(x0 + v0 + 1

2k1τ
2)

(4.52)

54 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

The second formulation seems rather different, in that it requires two force cal-
culations. Note, however, that the position at which the second force calculation
takes place is exactly the same position at which the first force calculation for
the next step will take place. Therefore, the second force calculation of each
step can be recycled as the first force calculation of the next step. Effectively,
we thus use only one force calculation per step. This trick is known in the liter-
ature as FSAL, short for First-Same-As-Last. We will come back to this point
below.

%\subsubsubsection{An Historical Note}
{\bf 4.1.1.4. An Historical Note}
Almost everywhere in the literature, Runge-Kutta methods are assumed to start
with k1 = f0: letting the first evaluation of the right-hand side of the differential
equation take place at the very beginning of the step. This is necessary in the
general case, but not for the special case of a second-order differential equation
where there is no velocity dependence in the force term. The only place we have
found so far in the literature, which mentions the possibility of starting with
the force evaluation already at a later time is a paragraph in Nyström (1925),
the original paper introducing what is now known as the Runge-Kutta-Nyström
algorithms.

In his section 2, p. 7, near the bottom, he remarks that, to be consistent, we
should allow the freedom to write a general expression of the type we have done
above in Eq. (4.24). He then adds that he decided against considering this extra
freedom, for two reasons, both pragmatic, the first related to speed of execution
of the algorithms, the second related to speed of derivation of the expressions
fot the algorithms. Here are his arguments.

First of all, we often know already the force evaluation at the beginning of
the step, from the last stage of the calculation of the previous step (at least
approximately; and using even earlier force calculations, we can further improve
the accuracy, without having to perform new force evaluations). Secondly, he
adds, starting from such a general expression has led him to such unwieldy
expressions that he was more or less forced to put η1 = 0 in his equivalent to
our Eq. (4.24).

Of course, current availability of algebraic manipulation programs have now
invalidated his second argument. Curiously, all text books seem to propagate
the simplifying assumption η1 = 0 without questioning what the basis for this
assumption may have been.

4.3 Two Force Evaluations per Step

%\subsubsubsection{General Form}
{\bf 4.1.2.1. General Form}

4.3. TWO FORCE EVALUATIONS PER STEP 55

If we allow two evaluations of the right-hand side of the differential equation,
we can work with the following general expression that is dimensionally correct

k1 = f(x0 + η11v0τ) (4.53)
k2 = f(x0 + η21v0τ + η22k1τ

2) (4.54)

which leads to the following expressions for position and velocity steps:

x1 = x0 + v0τ + (α1k1 + α2k2) τ2 (4.55)
v1 = v0 + (β1k1 + β2k2) τ (4.56)

Substituting the ki values, these equations expand into

x1 = x0 + v0τ + α1f(x0 + η11v0τ)τ2 +
α2f(x0 + η21v0τ + η22f(x0 + η11v0τ)τ2)τ2

v1 = v0 + β1f(x0 + η11v0τ)τ +
β2f(x0 + η21v0τ + η22f(x0 + η11v0τ)τ2)τ

(4.57)

So far, everything is still the exact prescription, given in the original algorithmic
scheme. If we now expand the expressions in powers of τ , we get:

x1 = x0 + v0τ + (α1 + α2)f0τ
2 +

(α1η11 + α2η21)f ′
0v0τ

3 + O(τ4)

v1 = v0 + (β1 + β2)f0τ + (β1η11 + β2η21)f ′
0v0τ

2 +
(1
2 (β1η

2
11 + β2η

2
21)f

′′
0 v2

0 + β2η22f0f
′
0)τ

3 + O(τ4)

(4.58)

This should be equal to the Taylor series:

x1 = x0 + v0τ + 1
2a0τ

2 + 1
6j0τ

3 + 1
24s0τ

4 + O(τ5) (4.59)

v1 = v0 + a0τ + 1
2j0τ

2 + 1
6s0τ

3 + 1
24c0τ

4 + O(τ5) (4.60)

EXPAND

This leads to the following conditions:

56 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

α1 + α2 = 1
2

α1η11 + α2η21 =
1
6

β1 + β2 = 1

β1η11 + β2η21 = 1
2

β1η
2
11 + β2η

2
21 =

1
3

β2η22 =
1
6

(4.61)

These can be solved in terms of η11 , as follows:

η21 =
3η11 − 2

3(2η11 − 1)

η22 =
2(3η2

11 − 3η11 + 1)
9(4η2

11 − 4η11 + 1)

α1 =
−η11 + 1

4(3η2
11 − 3η11 + 1)

α2 =
6η2

11 − 5η11 + 1
4(3η2

11 − 3η11 + 1)

β1 =
1

4(3η2
11 − 3η11 + 1)

β2 =
3(4η2

11 − 4η11 + 1)
4(3η2

11 − 3η11 + 1)

(4.62)

%\subsubsubsection{Examples}
{\bf 4.1.2.2. Examples}
If we take the standard assumption η11 = 0 , we get:

{
η11 = 0 ; η21 = 2

3 ; η22 = 2
9 ; α1 = 1

4 ; α2 = 1
4 ; β1 = 1

4 ; β2 = 3
4

}
(4.63)

This produces exactly what Nyström (1925) gives this as his simplest algorithm:

4.3. TWO FORCE EVALUATIONS PER STEP 57

x1 = x0 + v0τ + 1
4 (k1 + k2) τ2

v1 = v0 + 1
4 (k1 + 3k2) τ

k1 = f(x0)
k2 = f(x0 + 2

3v0τ + 2
9k1τ

2)

(4.64)

Henrici (1962) also lists this algorithm, refering back to Nyström (1925). How-
ever, Henrici’s expressions contain a typo: he lists the last coefficient as 1

3k1τ
2.

Nyström does list the term correctly, as 2
9k1τ

2.

If we try the other obvious choice η11 = 1
2 , we find that some of the coefficients

diverge: η21 = η21 = ∞. With two force evaluations, it seems not to be possible
to let the first one start right in the middle.

There is a natural choices that leads to relatively simple expressions for the
coefficients: η11 = 1

3 . Here the first force evaluation takes place after one third
of the duration of the time step. In this case we get:

{
η11 = 1

3 ; η21 = 1 ; η22 = 2
3 ; α1 = 1

2 ; α2 = 0 ; β1 = 3
4 ; β2 = 1

4

}
(4.65)

This leads to the following equations:

x1 = x0 + v0τ + 1
2k1τ

2

v1 = v0 + 1
4 (3k1 + k2) τ

k1 = f(x0 + 1
3v0τ)

k2 = f(x0 + v0τ + 2
3k1τ

2)

(4.66)

A complementary choise is η11 = 2
3 , for which the first force evaluation takes

place after two third of the duration of the time step. In this case we get:

{
η11 = 2

3 ; η21 = 0 ; η22 = 2
3 ; α1 = 1

4 ; α2 = 1
4 ; β1 = 3

4 ; β2 = 1
4

}
(4.67)

This leads to the following equations:

x1 = x0 + v0τ + 1
4 (k1 + k2)τ2

v1 = v0 + 1
4 (3k1 + k2) τ

k1 = f(x0 + 2
3v0τ)

k2 = f(x0 + 2
3k1τ

2)

(4.68)

There seem to be no other sets of simple coefficients. We might be tempted to
try, say, η11 = 1

4 , but in that case we get the much more complicated looking
set:

58 CHAPTER 4. PARTITIONED RUNGE-KUTTA ALGORITHMS

{
η11 = 1

4 ; η21 = 5
6 ; η22 = 7

18 ; α1 = 3
7 ; α2 = 1

14 ; β1 = 4
7 ; β2 = 3

7

}
(4.69)

This leads to the following equations:

x1 = x0 + v0τ + 1
14 (6k1 + k2) τ2

v1 = v0 + 1
7 (4k1 + 3k2) τ

k1 = f(x0 + 1
4v0τ)

k2 = f(x0 + 5
6v0τ + 7

18k1τ
2)

(4.70)

xxx

Chapter 5

Recycling Force Evaluations

5.1 One Force Evaluation per Step

%\subsubsubsection{General Form} {\bf 4.2.1.1. General Form}

k1 = f(x0) (5.1)
k2 = f(x0 + v0τ + ηk1τ

2) (5.2)

x1 = x0 + v0τ + (α1k1 + α2k2) τ2 (5.3)
v1 = v0 + (β1k1 + β2k2) τ (5.4)

3rd order not possible: in Eq. (4.63) we see that starting the first force calcu-
lation at time zero implies that the coefficient for v0 in k2 should be 2/3 , and
not 1 as we insist upon above. [EXPAND THIS]

This means that we only have to expand up to powers in τ2.

with

k2 = f0 + v0f
′
0τ + O(τ2) (5.5)

we get

x1 = x0 + v0τ + (α1 + α2) f0τ
2 + O(τ3)

v1 = v0 + (β1 + β2) f0τ + β2v0f
′
0τ

2 + O(τ3) (5.6)

59

60 CHAPTER 5. RECYCLING FORCE EVALUATIONS

This has to be equal to the Taylor series expansions:

x1 = x0 + v0τ + 1
2f0τ

2 + O(τ3)

v1 = v0 + f0τ + 1
2v0f

′
0τ

2 + O(τ3) (5.7)

This implies:

α1 + α2 = 1
2 (5.8)

and

β1 + β2 = 1 (5.9)

and

β2 = 1
2 (5.10)

From the last two, we get β1 = 1
2 . Two parameter freedom, with α ≡ α2:

x1 = x0 + v0τ + 1
2 ((1 − α)k1 + αk2) τ2

v1 = v0 + 1
2 (k1 + k2) τ

k1 = f(x0)
k2 = f(x0 + v0τ + ηk1τ

2)

(5.11)

%\subsubsubsection{Second Order Recycle Conditions}
{\bf 4.2.1.2. Second Order Recycle Conditions}
Now insist that x̃1 − x1 = O(τ2):

x̃1 = x0 + v0τ + ηk1τ
2

x1 = x0 + v0τ + 1
2 ((1 − α)k1 + αk2) τ2 (5.12)

Already okay. So we are left with a two-parameter freedom.

For α = 0 and η = 1
2 , simplest choice: leapfrog.

[check for which values time symmetry; presumably only for α = 0 and η = 1
2]

5.2. TWO FORCE EVALUATIONS PER STEP 61

5.2 Two Force Evaluations per Step

%\subsubsubsection{General Form} {\bf 4.2.2.1. General Form}

k1 = f(x0)
k2 = f(x0 + η21v0τ + η22k1τ

2)
k3 = f(x0 + v0τ + η32k1τ

2 + η33k2τ
2) (5.13)

x1 = x0 + v0τ + (α1k1 + α2k2 + α3k3) τ2

v1 = v0 + (β1k1 + β2k2 + β3k3) τ (5.14)

Let us expand up to powers in τ3.

k2 = f0 + η21v0f
′
0τ +

{
η22f0f

′
0 + 1

2η2
21v

2
0f ′′

0

}
τ2 + O(τ3) (5.15)

k3 = f0 + v0f
′
0τ +

{
(η32 + η33) f0f

′
0 + 1

2v2
0f ′′

0

}
τ2 + O(τ3) (5.16)

we get

x1 = x0 + v0τ + (α1 + α2 + α3) f0τ
2

+(α2η21 + α3) v0f
′
0τ

3 + O(τ4) (5.17)

This has to be equal to the Taylor series expansions:

x1 = x0 + v0τ + 1
2f0τ

2 + 1
6v0f

′
0τ

3 + O(τ4) (5.18)

which implies

α1 + α2 + α3 = 1
2 (5.19)

α2η21 + α3 = 1
6 (5.20)

v1 = v0 + (β1 + β2 + β3) f0τ + (β2η21 + β3) v0f
′
0τ

2

+
{(

β2η22 + β3(η32 + η33)
)
f0f

′
0 + 1

2

(
β2η

2
21 + β3

)
v2
0f ′′

0

}
τ3

+O(τ4) (5.21)

62 CHAPTER 5. RECYCLING FORCE EVALUATIONS

This has to be equal to the Taylor series expansions:

v1 = v0 + f0τ + 1
2v0f

′
0τ

2 + 1
6

{
f0f

′
0 + v2

0f ′′
0

}
τ3 + O(τ4) (5.22)

which implies

β1 + β2 + β3 = 1 (5.23)

β2η21 + β3 = 1
2 (5.24)

β2η
2
21 + β3 = 1

3 (5.25)

β2η22 + β3(η32 + η33) = 1
6 (5.26)

%\subsubsubsection{Third Order Recycle Conditions}
{\bf 4.2.2.2. Third Order Recycle Conditions}
Now insist that x̃1 − x1 = O(τ3):

x̃1 = x0 + v0τ + (η32k1 + η33k2) τ2 + O(τ3)
x1 = x0 + v0τ + 1

2f0τ
2 (5.27)

η32 + η33 = 1
2 (5.28)

seven equations for ten variables.

From the last two:

β2η22 + 1
2β3 = 1

6 (5.29)

Combining that with the equation above the two we just used:

β2

(
1
2η2

21 − η22

)
= 0 (5.30)

Two possibilities: β2 = 0 or η22 = 1
2η21. In the first case, β3 = 1

2 and β3 = 1
3

from the next to last equation and the one above that. Contradiction. Hence:

η22 = 1
2η21 (5.31)

5.2. TWO FORCE EVALUATIONS PER STEP 63

Introduce α ≡ α2 and η ≡ η21 , and use ζ ≡ η33 as the third parameter. Then

α1 = 1
3 + α(η − 1)

α2 = α

α3 = 1
6 − αη

β1 =
3η − 1

6η

β2 =
1

6η(1 − η)

β3 =
2 − 3η

6(1 − η)

η21 = η

η22 = 1
2η2

η32 = 1
2 − ζ

η33 = ζ

(5.32)

So in general:

x1 = x0 + v0τ +
(
(1
3 + α(η − 1))k1 + αk2 + (1

6 − αη)k3

)
τ2

v1 = v0 +
(

3η−1
6η k1 + 1

6η(1−η)k2 + 2−3η
6(1−η)k3

)
τ

k1 = f(x0)
k2 = f(x0 + ηv0τ + 1

2η2k1τ
2)

k3 = f(x0 + v0τ + ((1
2 − ζ)k1 + ζk2)τ2)

(5.33)

Example: for α = ζ = 0 , η = 1
2 :

x1 = x0 + v0τ + 1
6 (2k1 + k3) τ2

v1 = v0 + 1
6 (k1 + 4k2 + k3) τ

k1 = f(x0)
k2 = f(x0 + 1

2v0τ + 1
8k1τ

2)
k3 = f(x0 + v0τ + 1

2k1τ
2)

(5.34)

Like Simpon’s rule for velocity integration.

64 CHAPTER 5. RECYCLING FORCE EVALUATIONS

Another example: for α = ζ = 0 , η = 1
3 :

x1 = x0 + v0τ + 1
6 (2k1 + k3) τ2

v1 = v0 + 1
4 (3k2 + k3) τ

k1 = f(x0)
k2 = f(x0 + 1

3v0τ + 1
18k1τ

2)
k3 = f(x0 + v0τ + 1

2k1τ
2)

(5.35)

%\subsubsubsection{Exact Recycling}
{\bf 4.2.2.3. Exact Recycling}
So far, only pseudo-FSAL, or better: pseudo Runge Kutta!

Can we make it really FSAL Runge Kutta, to all orders?

1
2 − ζ = 1

3 − α(η − 1) (5.36)

ζ = α (5.37)

1
6 − αη = 0 (5.38)

With the first two:

1
6 + αη = 2α (5.39)

combining this with the third:

α = 1
6 (5.40)

leading to

ζ = 1
6 (5.41)

but alas:

η = 1 (5.42)

So this doesn’t work: the coefficients for the k2 and k3 terms in the expression
for v1 in Eq. (5.33) blow up.

%\subsubsubsection{A Search for a Fourth Order Scheme}
{\bf 4.2.2.4. A Search for a Fourth Order Scheme}

5.2. TWO FORCE EVALUATIONS PER STEP 65

Given that we have three free parameters left in our construction of a recycling
scheme that is third order correct, it is tempting to search for a fourth-order
scheme, based on only two new force calculations per time step.

Repeating the previous analysis to one order higher in τ , we get

k2 = f0 + η21v0f
′
0τ +

{
η22f0f

′
0 + 1

2η2
21v

2
0f ′′

0

}
τ2

+
{
η21η22v0f0f

′′
0 + 1

6η3
21v

3
0f ′′′

0

}
τ3 + O(τ4) (5.43)

k3 = f0 + v0f
′
0τ +

{
(η32 + η33) f0f

′
0 + 1

2v2
0f ′′

0

}
τ2

+
{

η21η33v0 (f ′
0)

2 + (η32 + η33) v0f0f
′′
0 + 1

6v3
0f ′′′

0

}
τ3

+ O(τ4) (5.44)

we get

x1 = x0 + v0τ + (α1 + α2 + α3) f0τ
2 + (α2η21 + α3) v0f

′
0τ

3

+(α2η22 + α3 (η32 + η33)) f0f
′
0τ

4 + 1
2

(
α2η

2
21 + α3

)
v2
0f ′′

0 τ4

+ O(τ5) (5.45)

This has to be equal to

x1 = x0 + v0τ + 1
2f0τ

2 + 1
6v0f

′
0τ

3 + 1
24f0f

′
0τ

4 + 1
24v2

0f ′′
0 τ4 + O(τ5) (5.46)

In addition to the previous conditions, we get the following two additional re-
quirements:

α2η22 + α3 (η32 + η33) = 1
24 (5.47)

α2η
2
21 + α3 = 1

12 (5.48)

Now:

v1 = v0 + (β1 + β2 + β3) f0τ + (β2η21 + β3) v0f
′
0τ

2

+
{(

β2η22 + β3(η32 + η33)
)
f0f

′
0 + 1

2

(
β2η

2
21 + β3

)
v2
0f ′′

0

}
τ3

+
{

β3η21η33v0 (f ′
0)

2 +
(
β2η21η22 + β3(η32 + η33)

)
v0f0f

′′
0

+ 1
6

(
β2η

3
21 + β3

)
v3
0f ′′′

0

}
τ4

+O(τ5) (5.49)

66 CHAPTER 5. RECYCLING FORCE EVALUATIONS

This has to be equal to

v1 = v0 + f0τ + 1
2v0f

′
0τ

2 + 1
6

{
f0f

′
0 + v2

0f ′′
0

}
τ3

+ 1
24

{
v0 (f ′

0)
2 + 3v0f0f

′′
0 + v3

0f ′′′
0

}
τ4 + O(τ5) (5.50)

We get the additional equations:

β2η
3
21 + β3 = 1

4 (5.51)

β2η21η22 + β3(η32 + η33) = 1
8 (5.52)

β3η21η33 = 1
24 (5.53)

We have thus eleven conditions gathered so far for the ten unknown parameters
{α1, α2, α3, β1, β2, β3, η21, η22, η32, η33}. A priori we would expect to find no
solutions in such an overdetermined system. However, let’s see how far we get
when we try. Let us list the conditions here together:

α1 + α2 + α3 = 1
2

α2η21 + α3 = 1

α2η
2
21 + α3 = 1

12

α2η22 + α3 (η32 + η33) = 1
24

β1 + β2 + β3 = 1

β2η21 + β3 = 1
2

β2η
2
21 + β3 = 1

3

β2η
3
21 + β3 = 1

4

β2η22 + β3(η32 + η33) = 1
6

β2η21η22 + β3(η32 + η33) = 1
8

β3η21η33 = 1
24

(5.54)

Subtracting the 6th and 7th equation, we find

5.2. TWO FORCE EVALUATIONS PER STEP 67

β2η21(1 − η21) = 1
6 (5.55)

and subtracting the 7th and 8th equation, we find

β2η
2
21(1 − η21) = 1

12 (5.56)

Together, these two expressions imply

η21(1 − η21) = 2η2
21(1 − η21) (5.57)

There are three solutions: η21 = 0 , η21 = 1 , and η21 = 1
2 . The first two solutions

can be discarded, because they would imply that the left-hand side of the 6th,
7th, and 8th equations above would all have the same value, contradicting the
fact that their right-hand sides have different values. We thus find

η21 = 1
2 (5.58)

With this result, we can use the remaining information in the 6th, 7th, and 8th
equations above to determine the other two values:

β2 = 2
3 (5.59)

β3 = 1
6 (5.60)

The 5th equation gives us

β1 = 1
6 (5.61)

Subtracting the 9th and 10th equation, we find

β2η22(1 − η21) = 1
24 (5.62)

and plugging in the values we have found so far gives us

η22 = 1
8 (5.63)

The 9th and 10th equation then give us:

η32 + η33 = 1
2 (5.64)

Since the 11th equation gives us

68 CHAPTER 5. RECYCLING FORCE EVALUATIONS

η33 = 1
2 (5.65)

we conclude that

η32 = 0 (5.66)

We can now write the 2nd and 3rd equations as

1
2α2 + α3 = 1

6 (5.67)

1
4α2 + α3 = 1

12 (5.68)

Subtraction those expressions gives us

1
4α2 = 1

12 (5.69)

or

α2 = 1
3 (5.70)

and plugging this back in the expressions above gives

α3 = 0 (5.71)

The 1st equation then gives

α1 = 1
6 (5.72)

Remarkably, we have been able to solve the eleven equations for the ten un-
knowns and found a consistent solution! To summarize:

α1 = 1
6 ; α2 = 1

3 ; α3 = 0

β1 = 1
6 ; β2 = 2

3 ; β3 = 1
6

η21 = 1
2 ; η22 = 1

8 ; η32 = 0 ; η33 = 1
2

(5.73)

Not only that, it turns out that we get an additional bonus: these solutions
solve the previous relation for demanding the x̃1 = x1 + O(τ3) , which was

η32 + η33 = 1
2 (5.74)

5.2. TWO FORCE EVALUATIONS PER STEP 69

We have thus found a consistent set of solutions for ten variables satisfying
twelve equations. Could we be really lucky? Could it be that in fact x̃1 =
x1 + O(τ4) ? If that were true, our fourth-order scheme would allow us to
recycle the last force calculation, and we would really have obtained a fourth-
order scheme with an effective costs of only two new force calculations per step.
This does sound too good to be true, but let’s just check.

x̃1 − x1 = {(η32k1 + η33k2) − (α1k1 + α2k2 + α3k3)} τ2

=
{

1
2k2 −

(
1
6k1 + 1

3k2

)}
τ2

= 1
6 (k2 − k1)τ2

= 1
12v0f

′
0τ

3 + O(τ4) (5.75)

It was too good to be true!

We thus have:

x1 = x0 + v0τ + 1
6 (k1 + 2k2) τ2

v1 = v0 + 1
6 (k1 + 4k2 + k3) τ

k1 = f(x0)
k2 = f(x0 + 1

2v0τ + 1
8k1τ

2)
k3 = f(x0 + v0τ + 1

2k2τ
2)

(5.76)

Looking at the equations this way, we can in fact see directly that a fourth-order
scheme doesn’t work (’directly’ once you have become sufficiently familiar with
all these expressions). For the scheme to be fourth order, the position where
the last force calculation is computed should agree to third order with the new
position at the end of the time step. However, the latter has a k1 term which
the former lacks, and since the difference k1 − k2 is of first order in τ , there
is a real third-order difference between the two positions, hence between the
forces computed in these two positions. The upshot is that this will introduce a
fourth-order error in the velocity in the next step, when we recycle the last force
calculation. Our scheme is thus only third-order accurate when we recycle, even
though it is fourth-order accurate if we decide to compute all three new forces
anew at each step.

By the way, as a fourth-order scheme, it is listed in Abramowitz and Stegun’s
welknown Handbook of Mathematical Functions as eq. 25.5.22, but with a typo:
the error in the position is listed as being O(τ4) , while it really should be O(τ5)
; in addition no error is listed for the velocity. As we have seen, for the velocity,
too, the error is O(τ5).

nil nil nil nil nil

70 CHAPTER 5. RECYCLING FORCE EVALUATIONS

Chapter 6

Literature References

Abramowitz, M. and Stegun, I.A., 1965, Handbook of Mathematical Functions
[Dover], p. xxx.

Delambre, J., 1792, Mem. Acad. Turin, 5, 143, 1790-1793

Henrici, P., 1962, Discrete Variable Methods in Ordinary Differential Equations
[Wiley], pp. 172-173

Nyström, E.J., 1925, Acta Soc. Sci. Fenn., 50, No.13, 1-55

Toxvaerd, S., 1993, J. Chem. Phys. 99, 2277 (1993),

71

