
The Art of Computational Science

Open Knowledge

0: Manifesto

Piet Hut and Jun Makino

September 13, 2007

Contents

Preface 5

0.1 Tacit Knowledge . 5

0.2 Projects . 5

0.3 ACS versions . 6

0.4 A Historical Note . 7

0.5 Acknowledgments . 7

1 ACS Manifesto 9

1.1 A Celestial Lab . 9

1.2 Research = Education . 9

1.3 Open Knowledge . 10

1.4 Dialogues . 11

1.5 Audience . 11

3

4 CONTENTS

Preface

0.1 Tacit Knowledge

In many areas of science, computer simulations of complex physical systems
cannot be performed with off-the-shelf software packages. Instead, computa-
tional scientists have to design and build their own software environment, just
as experimental scientists have to design and build their own laboratories, be-
fore being able to use them. For a long time, however, the know-how needed to
construct computational laboratories has remained only a form of tacit knowl-
edge.

Unlike explicit knowledge that can be found in manuals, this type of implicit
knowledge has been alive in conversations among experts, and has been passed
down in that way only as a form of oral tradition. This kind of knowledge has
not been written down anywhere in sufficient detail to allow it to be passed
down without direct personal instructions, or indirect osmosis through personal
participation in a joint project.

We have started the The Art of Computational Science (ACS) series with the
aim of making explicit the implicit knowledge of experts of scientific simula-
tions. Besides offering detailed explanations of the structure of the computer
codes used, in an ‘open source’ style, we provide a deeper layer of knowledge.
Besides the what and how for any computer code, we also provide the why: the
motivation for writing it the way it was written, within the context in which it
was conceived. This will give the user more appreciation for the background of
the structure chosen, and most importantly, this will give the user the ability to
easily modify and extend the codes presented, without finding oneself at odds
with the original style and aim.

0.2 Projects

So far, we have started two projects within the ACS series. The umbrella
project is called Open Knowledge. Volumes in this series will address issues
that are common for all branches of computational science. Other projects will

5

6 CONTENTS

be more specific, addressing issues for a particular set of scientific problems. The
Maya project is an example of a project in astrophysics, aimed at developing a
computational laboratory for the study of dense stellar systems.

It is our sincere hope that our example will inspire the start of various other
projects, following the general philosophy of the ACS initiative. We welcome
contributions from others along these lines, in any field of science.

The current volume forms the start of the Open Knowledge series. It will contain
information about the background for the ACS approach, and general issues that
come up with respects to its implementation. For now, we have written only
the first chapter. In future releases we plan to add more material, based in a
large part on reactions from colleagues and students, using our material.

The next volume will contain a detailed discussion of the infrastructure of ACS
documentation. We have drawn our inspiration from various sources, including
Donald Knuth’s notion of literate programming. Our current implementation is
based on extensions of the Rdoc system (see ”http://rdoc.sourceforge.net/”),
which we found to have a type of balance between generality and ease of imple-
mentation which was just right for our purpose.

0.3 ACS versions

We use the name The Art of Computational Science not only for our book series,
but more generally for the software environment for which the books provide the
narrative. The environment includes the collection of computer codes discussed
in the books, together with the infrastructure to make it all work together
seamlessly. This implies extensive comments provided in the codes themselves,
as well as manual pages.

Our plan is to make successive stable versions of this software environment avail-
able, starting with ACS 1.0, which contains a small but self-sufficient core of sim-
ple N-body programs and accompanying documentation and narrative. These
versions can be freely downloaded from our web site ”http://www.ArtCompSci.org”.
They include all completed and partly completed volumes in our book series.
Text, code, and everything else is presented as open source software under the
conditions of the MIT license:

Copyright (c) 2004 -- present, Piet Hut & Jun Makino

Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software

0.4. A HISTORICAL NOTE 7

is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

0.4 A Historical Note

In preparing for our project, we wrote a complete manuscript, titled Moving
Stars Around MSA), also in dialogue form, but aimed more at beginning stu-
dents who may not yet have much familiarity with computer programming and
the use of numerical methods. We have no current plans to continue that partic-
ular approach, but even so, the manuscript will remain a useful guide for N-body
calculations, with a somewhat different emphasis than the one presented in the
Kali series.

For example, MSA provides a very quick shortcut to playing with simple algo-
rithms and simple graphics representations of orbit calculations. Both topics
are treated in far more detail in the Kali series, leading to far more robust and
general code, but it will also require more patience from the reader to get there.
This is one of the reasons that we decided to keep the MSA volume on our web
site indefinitely, as additional introductory material.

0.5 Acknowledgments

Besides thanking our home institutes, the Institute for Advanced Study in
Princeton and the University of Tokyo, we want to convey our special grati-
tude to the Yukawa Institute of Theoretical Physics in Kyoto, where we have
produced a substantial part of our ACS material, including its basic infrastruc-
ture, during extended visits made possible by the kind invitations to both of us
by Professor Masao Ninomiya. We thank Martin Hansen and Douglas Heggie
for comments on the manuscript.

8 CONTENTS

Piet Hut and Jun Makino

Kyoto, June 2004

(written for the occasion of the ACS 1.0 release)

Chapter 1

ACS Manifesto

1.1 A Celestial Lab

Computers have given scientists a wonderful virtual laboratory, in which they
can simulate any part of reality for which we have sufficient knowledge of the
underlying dynamics. Nowhere is this more helpful than in astronomy. While
being the oldest science, astronomy has never been able to put stars and galaxies
in a test tube – until computers finally gave astrophysicists their own lab.

Letting stars dance, and studying their interactions, is one of the most fun types
of pure research we have been engaged in. What has been less fun, though, is
the struggle we have endured trying to squeeze results from inadequate software
tools. Ideally, tools should be transparent to the user, letting him or her focus
on the job to be done, while also being flexible enough to be put to new and
unanticipated use. In practice, few software packages live up to this combined
ideal of transparency and flexibility.

1.2 Research = Education

Software architecture is a very young craft. Humanity has had experience with
building material buildings for many thousands of years, but software building
has a history of only half a century. In addition, a major software environment is
even more complex, and contains more parts, than the most ornate building. It
should not come as any surprise that software failures, delays, and cost overruns
are part of our daily news. Clearly, there are still major lessons to be learned
about some of the basics involved in setting up a large software project.

In our project, the Art of Computational Science, we explore a radical break
with the way software has been developed so far for scientific simulations. We
have decided to focus on computational science, simply because that is our ter-

9

10 CHAPTER 1. ACS MANIFESTO

rain of expertise. However, we expect our new approach to have applications
for software development in general, and we would welcome and encourage any
attempt by others to extend our philosophy to other areas of software develop-
ment.

At the core of our approach lies the notion that, in any large-scale software
project, research = education. As soon as such a project grows beyond what
any one person can keep in mind and view as a whole, the different researchers
have no choice but to educate each other about the structure and purpose
and functionality of the different parts. Documentation is key, but not only
documentation of what a given program does, but also how it fits in with other
programs, and more importantly what type of vision it is part of, why the many
design decisions leading to this program were made the way they were, how it
will be possible to modify and/or extend that design, and so on.

After having struggled for more than two decades in our professional work with
the limitations of software products of all kinds – commercial packages as well
as legacy codes within our own field, those written by others as well as by
ourselves – we have come to the conclusion that there ought to be a better way.
After a detailed analysis of our frustrations with most any type of large software
package that we have ever used, we came to the conclusion that the major lack
in almost all of those packages was the lack of complete documentation.

1.3 Open Knowledge

What we mean by complete documentation goes beyond the requirement of
‘open source’ access to the source code. This is an important first step, but it
is only the beginning. In order to use a complex piece of software comfortably,
wearing it like well fitting clothes, it should not harbor any secrets. And the
best kept secret, even for codes with great manuals and worked-out examples of
usage, is often the path that was taken to arrive at the code, while building it.
Unfortunately, without that knowledge, any attempt to modify or extend the
code is likely to be haphazard at best, and likely to lead to proliferation of code
growth with dissonant and poorly connected pieces, leading to the phenomenon
of ‘spaghetti code’ before long.

When we reached these conclusions a few years ago, we decided that the only
radical solution to the problem of software development would be to make the
design process itself ‘open source’, on a human level as well as on a code level.
Software should run accurately on a computer. And software should be deeply
understandable in all its ramification by human beings as well. The latter is the
more challenging task, and that is what should consume the major amount of
resources, in terms of time and energy of software builders. The result will be
a move from ‘open source’ to ‘open knowledge.’

How to write software as a tightly interwoven and complete set of explana-

1.4. DIALOGUES 11

tions for computers and humans? The answer to the computer part has been
developed over the last few decades, in the form of a hierarchical layer of, at
bottom, machine code, and layered thereupon assembly code, traditional com-
puter languages, and higher-level scripting languages, graphic user interfaces,
etc. In contrast, the answer to the human part has not progressed as much. We
have learned to comment our code, to write manuals, and in the best cases to
construct elaborate on-line help facilities. But something is missing.

What is missing is the knowledge of what went on in the designer’s minds,
while writing the software. How often have we wished to have been present,
in fly-on-the-wall mode, while software writers discussed and debated, in the
middle of being engaged with developing a crucial piece of software that we were
struggling to work with! A living human dialogue, recorded during those crucial
stages, would undoubtedly have given valuable clues to the tacit assumptions
and motivations that color any software product. And knowledge of those clues
would be invaluable in any attempt to extend that product in major new ways.

1.4 Dialogues

The solution we felt driven to was simple, in retrospect: to take the classic
literary device of a dialogue, following in the footsteps of Plato and Galileo, who
used dialogues to convey not only the information content of their knowledge,
but also the flavor and setting and ramifications.

Of course, we realized that it would take a lot of our time to write dialogues
covering the whole process of software development. In fact, we had no idea at
all, in the beginning, of how much time this would actually take us. The amount
of essential but tacit knowledge hidden in the mind of any expert is enormous,
typically far more than the expert is aware of, as emphasized already half a
century ago by the physical chemist turned social scientist Michael Polanyi.

Even in areas where we were convinced that we had all the necessary knowledge
in our finger tips, as soon as we forced ourselves to be explicit about all the
‘hows’ and ‘whys’, we found ourselves discovering new aspects in the middle of
our dialogue writing. In quite a number of cases, we found new and better ways
to do standard operations in N-body simulations, to our great surprise.

1.5 Audience

Having worked with this approach now for a few years, we have reached the
point that we feel confident in making our results publicly available. From
the beginning, we have resisted the temptation to define an audience, since we
viewed our project as pure research in the strictest possible terms. Starting with
a target audience would slant our dialogues in a particular applied direction,
diminishing completeness and free flow.

12 CHAPTER 1. ACS MANIFESTO

In fact, from the beginning we decided to write this series of books for an
audience of only two: younger versions of ourselves. In other words, we set
out to write the type of books that we wished we had been able to read when
we started our careers in computational science. Throughout our writing, we
have stuck to this idea of this original audience of two – or zero, really, since
our younger selves are no longer here – and we had no idea to what extent our
ruminations would be useful for others.

It was therefore with no particular expectations, when we tested out our first
volume with a group of students who attended an N-body School, organized
by Christian Boily in Strasbourg, France, in March 2004, while we were both
visiting the Observatory there. To our happy surprise, most students in fact
reacted the way we would have reacted, had we had our book in our hands when
we were students. While it is still too early to judge how effective our approach
will be for others, this initial experience formed a strong encouragement for us
to proceed with our unconventional approach.

nil nil nil nil nil nil nil nil nil nil

